This paper presents a novel trajectory generation technique, which has the capability to avoid excitation of inertial vibrations in precision manufacturing equipment. A major source of vibrations in fast moving precision manufacturing equipment is the inertial vibrations that are excited due to frequency content of reference motion commands (trajectory). In general practice, those inertial vibrations are avoided within the controller architecture through notch filtering. Or, input-shaping methods are utilized to attenuate critical frequency components of the reference trajectory so that lightly damped vibration modes of the structure are not excited. Instead of employing those postfiltering techniques that add unwanted delay to the coordinated motion, this paper introduces a direct trajectory generation technique with a shaped frequency content to suppress inertial vibrations. The time-stamped acceleration profile of the feed profile is defined as a ninth-order polynomial. Polynomial coefficients are solved through an optimization procedure where the objective function penalizes total frequency energy in a desired frequency band. As a result, generated reference acceleration commands do not contain any excitation near the vibration modes of the system and hence excitation of inertial vibrations is avoided. The proposed frequency optimal feed profiling (FOFP) system can be utilized to generate high-speed accurate point-to-point (P2P) trajectories as well as to interpolate continuous multi-axis coordinated motion. Effectiveness of the proposed FOFP scheme is evaluated through rigorous comparison against the well-known minimum jerk feed profiles (MJFP) technique through simulations and experiments. Experimental validation is performed on an in-house controlled machine tool with flexible structure.

References

References
1.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
2.
Altintas
,
Y.
,
Verl
,
A.
,
Brecher
,
C.
,
Uriarte
,
L.
, and
Pritschow
,
G.
,
2011
, “
Machine Tool Feed Drives
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
779
796
.
3.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2008
, “
Feed Optimization for Five-Axis CNC Machine Tools With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
48
(
7
), pp.
733
745
.
4.
Hyde
,
J. M.
, and
Seering
,
W. P.
,
1991
, “
Using Input Command Pre-Shaping to Suppress Multiple Mode Vibration
,”
IEEE International Conference on Robotics and Automation
, pp.
2604
2609
.
5.
Ellis
,
G.
, and
Lorenz
,
R. D.
,
2000
, “
Resonant Load Control Methods for Industrial Servo Drives
,”
IEEE Industry Applications Conference
, Vol.
3
, pp.
1438
1445
.
6.
Erkorkmaz
,
K.
, and
Kamalzadeh
,
A.
,
2006
, “
High Bandwidth Control of Ball Screw Drives
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
393
398
.
7.
Shin
,
Y. J.
, and
Meckl
,
P. H.
,
2010
, “
Application of Combined Feedforward and Feedback Controller With Shaped Input to Benchmark Problem
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
2
), p.
021001
.
8.
Hirata
,
M.
, and
Ueno
,
F.
,
2011
, “
Polynomial-Input-Type Final-State Control Taking Account of Input Saturation
,”
18th IFAC World Congress
, pp.
4061
4066
.
9.
Kamalzadeh
,
A.
, and
Erkorkmaz
,
K.
,
2007
, “
Compensation of Axial Vibrations in Ball Screw Drives
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
373
378
.
10.
Chen
,
S.
, and
Cao
,
Z.
,
2000
, “
A New Method for Determining Locations of the Piezoelectric Sensor/Actuator for Vibration Control of Intelligent Structures
,”
J. Intell. Mater. Syst. Struct.
,
11
(
2
), pp.
108
115
.
11.
Miyoshi
,
T.
,
Noda
,
Y.
, and
Terashima
,
K.
,
2007
, “
Feedforward Control Considering Input and States Constraints With Eliminating Residual Vibration
,”
IEEE American Control Conference
, pp.
5005
5010
.
12.
Singhose
,
W. E.
,
Searing
,
W. P.
, and
Singer
,
N. C.
,
1996
, “
Improving Repeatability of Coordinate Measuring Machines With Shaped Command Signals
,”
Precis. Eng.
,
18
(
2
), pp.
138
146
.
13.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
76
82
.
14.
Vaughan
,
J.
,
Yano
,
A.
, and
Singhose
,
W.
,
2008
, “
Comparison of Robust Input Shapers
,”
J. Sound Vib.
,
315
(
4
), pp.
797
815
.
15.
Altintas
,
Y.
, and
Khoshdarregi
,
M. R.
,
2012
, “
Contour Error Control of CNC Machine Tools With Vibration Avoidance
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
335
338
.
16.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
High Speed Cornering Strategy With Confined Contour Error and Vibration Suppression for CNC Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
369
372
.
17.
Fleming
,
A. J.
, and
Wills
,
A. G.
,
2009
, “
Optimal Periodic Trajectories for Band-Limited Systems
,”
IEEE Trans. Control Syst. Technol.
,
17
(
3
), pp.
552
562
.
18.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design—Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
19.
Yoshioka
,
T.
,
Shimada
,
N.
,
Ohishi
,
K.
, and
Miyazaki
,
T.
,
2011
, “
High Performance Final State Control System Based on Minimum-Jerk Trajectory for Industrial Robots
,”
IECON 37th Annual Conference on IEEE Industrial Electronics Society
, pp.
3400
3405
.
20.
Altintas
,
Y.
, and
Erkorkmaz
,
K.
,
2003
, “
Feedrate Optimization for Spline Interpolation in High Speed Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
52
(
1
), pp.
297
302
.
21.
Flash
,
T.
, and
Hogan
,
N.
,
1985
, “
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
,”
J. Neurosci.
,
5
(
7
), pp.
1688
1703
.
22.
Kyriakopoulos
,
K. J.
, and
Saridis
,
G. N.
,
1994
, “
Minimum Jerk for Trajectory Planning and Control
,”
Robotica
,
12
(
2
), pp.
109
113
.
23.
Pattacini
,
U.
,
Nori
,
F.
,
Natale
,
L.
,
Metta
,
G.
, and
Sandini
,
G.
,
2010
, “
An Experimental Evaluation of a Novel Minimum-Jerk Cartesian Controller for Humanoid Robots
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
1668
1674
.
24.
Barre
,
P. J.
,
Bearee
,
R.
,
Borne
,
P.
, and
Dumetz
,
E.
,
2005
, “
Influence of a Jerk Controlled Movement Law on the Vibratory Behaviour of High-Dynamics Systems
,”
J. Intell. Rob. Syst.
,
42
(
3
), pp.
275
293
.
25.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p. 0
44501
.
26.
Erkorkmaz
,
K.
,
Alzaydi
,
A.
,
Elfizy
,
A.
, and
Engin
,
S.
,
2011
, “
Time-Optimal Trajectory Generation for 5-Axis on-the-Fly Laser Drilling
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
411
414
.
27.
Ding
,
J.
,
Marcassa
,
F.
, and
Tomizuka
,
M.
,
2004
, “
Short Seeking Control With Minimum Jerk Trajectories for Dual Actuator Hard Disk Drive Systems
,”
IEEE American Control Conference
, Vol.
1
, pp.
529
534
.
28.
Chang
,
B. H.
, and
Hori
,
Y.
,
2006
, “
Trajectory Design Considering Derivative of Jerk for Head-Positioning of Disk Drive System With Mechanical Vibration
,”
IEEE/ASME Trans. Mechatronics
,
11
(
3
), pp.
273
279
.
29.
Wiener
,
N.
,
1988
,
The Fourier Integral and Certain of Its Applications
,
CUP Archive
, New York.
30.
Philip
,
E. G.
,
Murray
,
W.
, and
Margaret
,
H. W.
,
1981
,
Practical Optimization
,
Academic Press
, San Diego, CA.
31.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of NC Systems Along Linear Tool Paths
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1977
1992
.
32.
Yeh
,
S. S.
, and
Hsu
,
P. L.
,
2004
, “
Perfectly Matched Feedback Control and Its Integrated Design for Multiaxis Motion Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
3
), pp.
547
557
.
33.
Gould
,
N.
, and
Toint
,
P. L.
,
2004
, “
Preprocessing for Quadratic Programming
,”
Math. Program.
,
100
(
1
), pp.
95
132
.
34.
Erkorkmaz
,
K.
,
Yeung
,
C. H.
, and
Altintas
,
Y.
,
2006
, “
Virtual CNC System—Part II: High Speed Contouring Application
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1124
1138
.
You do not currently have access to this content.