Drop-on-demand (DOD) microdroplet jetting technology has diverse applications ranging from additive manufacturing (AM) and the integrated circuit (IC) industry to cell printing. An engineering model of droplet formation can provide insights for optimizing the process and ensuring its controllability and reproducibility. This paper reports a development of an engineering model on the fluid outflow and microdroplet formation based on alternating viscous-inertial force jetting (AVIFJ). The model provides a fundamental understanding on the mechanism of droplet formation driven by the alternating viscous force and inetial force. Furthermore, the model studies the fluid acceleration, velocity, and displacement under the conditions of a uniform cylindrical nozzle and a nonuniform cylindrical nozzle. In conjunction with an energy-based criterion for droplet formation, the model is applied to predict the formability of single microdroplets and the volume and velocity of formed microdroplets. A series of experiments was conducted to validate the developed model. The results show that the model predictions agree well with the experimental results. Specifically, comparing the model prediction and experimental results, the maximum difference of drop diameter is 4 μm, and the maximum difference of drop velocity is 0.3 m/s. These results suggest that the developed theoretical model will provide guidance to the subsequent cell printing applications.

References

References
1.
Fang
,
M.
,
Chandra
,
S.
, and
Park
,
C. B.
,
2008
, “
Building Three-Dimensional Objects by Deposition of Molten Metal Droplets
,”
Rapid Prototyping J.
,
14
(
1
), pp.
44
52
.
2.
Yan-pu
,
C.
,
Le-hua
,
Q.
,
Yuan
,
X.
,
Jun
,
L.
, and
Ji-ming
,
Z.
,
2012
, “
Manufacturing of Micro Thin-Walled Metal Parts by Micro-Droplet Deposition
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
484
491
.
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
4.
Zhengchun
,
L.
,
Yi
,
S.
, and
Varahramyan
,
K.
,
2005
, “
Inkjet-Printed Silver Conductors Using Silver Nitrate Ink and Their Electrical Contacts With Conducting Polymers
,”
Thin Solid Films
,
478
(
1–2
), pp.
275
279
.
5.
Ben-Tzvi
,
P.
,
Ben Mrad
,
R.
, and
Goldenberg
,
A. A.
,
2007
, “
A Conceptual Design and FE Analysis of a Piezoceramic Actuated Dispensing System for Microdrops Generation in Microarray Applications
,”
Mechatronics
,
17
(
1
), pp.
1
13
.
6.
Wang
,
W.
,
Herran
,
C. L.
,
Coutris
,
N.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2013
, “
Methodology for the Evaluation of Double-Layered Microcapsule Formability Zone in Compound Nozzle Jetting Based on Growth Rate Ratio
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
510011
.
7.
Barron
,
J. A.
,
Ringeisen
,
B. R.
,
Kim
,
H.
,
Spargo
,
B. J.
, and
Chrisey
,
D. B.
,
2004
, “
Application of Laser Printing to Mammalian Cells
,”
Thin Solid Films
,
453–454
, pp.
383
387
.
8.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.
9.
Calvert
,
P.
,
2007
, “
Printing Cells
,”
Science
,
318
(
5848
), pp.
208
209
.
10.
Tao
,
X.
,
Kincaid
,
H.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2008
, “
High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021017
.
11.
Zhao
,
Y.
,
Yao
,
R.
,
Ouyang
,
L. L.
,
Ding
,
H. X.
,
Zhang
,
T.
,
Zhang
,
K. T.
,
Cheng
,
S. J.
, and
Sun
,
W.
,
2014
, “
Three-Dimensional Printing of Hela Cells for Cervical Tumor Model In Vitro
,”
Biofabrication
,
6
(
3
), p.
035001
.
12.
Shapira
,
A.
,
Kim
,
D. H.
, and
Dvir
,
T.
,
2014
, “
Advanced Micro- and Nanofabrication Technologies for Tissue Engineering
,”
Biofabrication
,
6
(
2
), p.
020301
.
13.
Faulkner-Jones
,
A.
,
Greenhough
,
S.
,
King
,
J. A.
,
Gardner
,
J.
,
Courtney
,
A.
, and
Shu
,
W. M.
,
2013
, “
Development of a Valve-Based Cell Printer for the Formation of Human Embryonic Stem Cell Spheroid Aggregates
,”
Biofabrication
,
5
(
1
), p.
015013
.
14.
Hamid
,
Q.
,
Wang
,
C. Y.
,
Zhao
,
Y.
,
Snyder
,
J.
, and
Sun
,
W.
,
2014
, “
A Three-Dimensional Cell-Laden Microfluidic Chip for In Vitro Drug Metabolism Detection
,”
Biofabrication
,
6
(
2
), p.
025008
.
15.
Ringeisen
,
B. R.
,
Pirlo
,
R. K.
,
Wu
,
P. K.
,
Boland
,
T.
,
Huang
,
Y.
,
Sun
,
W.
,
Hamid
,
Q.
, and
Chrisey
,
D. B.
,
2013
, “
Cell and Organ Printing Turns 15: Diverse Research to Commercial Transitions
,”
MRS Bull.
,
38
(
10
), pp.
834
843
.
16.
Sweet
,
R. G.
,
1965
, “
High Frequency Recording With Electrostatically Deflected Ink Jets
,”
Rev. Sci. Instrum.
,
36
(
2
), pp.
131
133
.
17.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
,
2004
, “
Computer-Aided Tissue Engineering: Overview, Scope and Challenges
,”
Biotechnol. Appl. Biochem.
,
39
(
1
), pp.
29
47
.
18.
Li
,
E. Q.
,
Xu
,
Q.
,
Sun
,
J.
,
Fuh
,
J. Y. H.
,
Wong
,
Y. S.
, and
Thoroddsen
,
S. T.
,
2010
, “
Design and Fabrication of a PET/PTFE-Based Piezoelectric Squeeze Mode Drop-on-Demand Inkjet Printhead With Interchangeable Nozzle
,”
Sens. Actuator A Phys.
,
163
(
1
), pp.
315
322
.
19.
Arrabito
,
G.
, and
Pignataro
,
B.
,
2010
, “
Inkjet Printing Methodologies for Drug Screening
,”
Anal. Chem.
,
82
(
8
), pp.
3104
3107
.
20.
Xu
,
F.
,
Celli
,
J.
,
Rizvi
,
I.
,
Moon
,
S.
,
Hasan
,
T.
, and
Demirci
,
U.
,
2011
, “
A Three-Dimensional In Vitro Ovarian Cancer Coculture Model Using a High-Throughput Cell Patterning Platform
,”
Biotechnol. J.
,
6
(
2
), pp.
204
212
.
21.
Chengyang
,
W.
,
Zhenyu
,
T.
,
Yu
,
Z.
,
Rui
,
Y.
,
Lingsong
,
L.
, and
Wei
,
S.
,
2014
, “
Three-Dimensional In Vitro Cancer Models: A Short Review
,”
Biofabrication
,
6
(
2
), p.
022001
.
22.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnol. J.
,
1
(
9
), pp.
910
917
.
23.
Arai
,
K.
,
Iwanaga
,
S.
,
Toda
,
H.
,
Genci
,
C.
,
Nishiyama
,
Y.
, and
Nakamura
,
M.
,
2011
, “
Three-Dimensional Inkjet Biofabrication Based on Designed Images
,”
Biofabrication
,
3
(
3
), p.
034113
.
24.
Yu
,
Y.
,
Zhang
,
Y. H.
, and
Ozbolat
, I
. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.
25.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.
26.
Kang
,
H. W.
,
Park
,
J. H.
,
Kang
,
T. Y.
,
Seol
,
Y. J.
, and
Cho
,
D. W.
,
2012
, “
Unit Cell-Based Computer-Aided Manufacturing System for Tissue Engineering
,”
Biofabrication
,
4
(
1
), p.
015005
.
27.
Plouffe
,
B. D.
,
Murthy
,
S. K.
, and
Lewis
,
L. H.
,
2015
, “
Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment: A Review
,”
Rep. Prog. Phys.
,
78
(
1
), p.
016601
.
28.
Hamid
,
Q.
,
Wang
,
C. Y.
,
Zhao
,
Y.
,
Snyder
,
J.
, and
Sun
,
W.
,
2014
, “
Fabrication of Biological Microfluidics Using a Digital Microfabrication System
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061001
.
29.
Zhang
,
T.
,
Yan
,
K. R. C.
,
Ouyang
,
L. L.
, and
Sun
,
W.
,
2013
, “
Mechanical Characterization of Bioprinted In Vitro Soft Tissue Models
,”
Biofabrication
,
5
(
4
), p.
045010
.
30.
Bernacka-Wojcik
,
I.
,
Senadeera
,
R.
,
Wojcik
,
P. J.
,
Silva
,
L. B.
,
Doria
,
G.
,
Baptista
,
P.
,
Aguas
,
H.
,
Fortunato
,
E.
, and
Martins
,
R.
,
2010
, “
Inkjet Printed and ‘Doctor Blade’ TiO2 Photodetectors for DNA Biosensors
,”
Biosens. Bioelectron.
,
25
(
5
), pp.
1229
1234
.
31.
Xu
,
T.
,
Zhao
,
W. X.
,
Zhu
,
J. M.
,
Albanna
,
M. Z.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2013
, “
Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology
,”
Biomaterials
,
34
(
1
), pp.
130
139
.
32.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.
33.
Ikegawa
,
M.
,
Ishii
,
E.
,
Harada
,
N.
, and
Takagishi
,
T.
,
2014
, “
Development of Ink-Particle Flight Simulation for Continuous Inkjet Printers
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051021
.
34.
Xu
,
C. X.
,
Zhang
,
Z. Y.
,
Christensen
,
K.
,
Huang
,
Y.
,
Fu
,
J. Z.
, and
Markwald
,
R. R.
,
2014
, “
Freeform Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Tubular Constructs Using Inkjetting
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061020
.
35.
Fathi
,
S.
,
Dickens
,
P.
,
Khodabakhshi
,
K.
, and
Gilbert
,
M.
,
2013
, “
Microcrystal Particles Behaviour in Inkjet Printing of Reactive Nylon Materials
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011009
.
36.
Melissinaki
,
V.
,
Gill
,
A. A.
,
Ortega
,
I.
,
Vamvakaki
,
M.
,
Ranella
,
A.
,
Haycock
,
J. W.
,
Fotakis
,
C.
,
Farsari
,
M.
, and
Claeyssens
,
F.
,
2011
, “
Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications
,”
Biofabrication
,
3
(
4
), p.
045005
.
37.
Gudapati
,
H.
,
Yan
,
J. Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2014
, “
Alginate Gelation-Induced Cell Death During Laser-Assisted Cell Printing
,”
Biofabrication
,
6
(
3
), p.
035022
.
38.
Catros
,
S.
,
Fricain
,
J. C.
,
Guillotin
,
B.
,
Pippenger
,
B.
,
Bareille
,
R.
,
Remy
,
M.
,
Lebraud
,
E.
,
Desbat
,
B.
,
Amedee
,
J.
, and
Guillemot
,
F.
,
2011
, “
Laser-Assisted Bioprinting for Creating On-Demand Patterns of Human Osteoprogenitor Cells and Nano-Hydroxyapatite
,”
Biofabrication
,
3
(
2
), p.
025001
.
39.
Jayasinghe
,
S. N.
,
Qureshi
,
A. N.
, and
Eagles
,
P. A. M.
,
2006
, “
Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells
,”
Small
,
2
(
2
), pp.
216
219
.
40.
Rui
,
Y.
,
Renji
,
Z.
,
Jie
,
L.
, and
Feng
,
L.
,
2012
, “
Alginate and Alginate/Gelatin Microspheres for Human Adipose-Derived Stem Cell Encapsulation and Differentiation
,”
Biofabrication
,
4
(
2
), p.
025007
.
41.
Wei
,
C.
, and
Dong
,
J. Y.
,
2014
, “
Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change Inks for High-Resolution Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061010
.
42.
Moon
,
S.
,
Hasan
,
S. K.
,
Song
,
Y. S.
,
Xu
,
F.
,
Keles
,
H. O.
,
Manzur
,
F.
,
Mikkilineni
,
S.
,
Hong
,
J. W.
,
Nagatomi
,
J.
,
Haeggstrom
,
E.
,
Khademhosseini
,
A.
, and
Demirci
,
U.
,
2010
, “
Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets
,”
Tissue Eng. Part C Methods
,
16
(
1
), pp.
157
166
.
43.
Demirci
,
U.
,
2006
, “
Acoustic Picoliter Droplets for Emerging Applications in Semiconductor Industry and Biotechnology
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
957
966
.
44.
Zhao
,
L.
,
Yan
,
K. R. C.
,
Yao
,
R.
,
Lin
,
F.
, and
Sun
,
W.
,
2015
, “
Alternating Force Based Drop-on-Demand Microdroplet Formation and Three-Dimensional Deposition
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031009
.
45.
Wilkes
,
E. D.
,
1997
, “
Forced Oscillations of Pendant (Sessile) Drops
,”
Phys. Fluids
,
9
(
6
), pp.
1512
1528
.
46.
Wilkes
,
E. D.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
,
1999
, “
Computational and Experimental Analysis of Dynamics of Drop Formation
,”
Phys. Fluids
,
11
(
12
), pp.
3577
3598
.
47.
Basaran
,
O. A.
, and
Yildirim
,
O. E.
,
2006
, “
Dynamics of Formation and Dripping of Drops of Deformation-Rate-Thinning and -Thickening Liquids From Capillary Tubes
,”
J. Non-Newton. Fluid Mech.
,
136
(
1
), pp.
17
37
.
48.
Fawehinmi
,
O.
,
Gaskell
,
P.
,
Jimack
,
P. K.
,
Kapur
,
N.
, and
Thompson
,
H.
,
2005
, “
A Combined Experimental and Computational Fluid Dynamics Analysis of the Dynamics of Drop Formation
,”
Proc. Inst. Mech. Eng. Part C
,
219
(
9
), pp.
933
947
.
49.
Bogy
,
D. B.
, and
Talke
,
F. E.
,
1984
, “
Experimental and Theoretical-Study of Wave-Propagation Phenomena in Drop-on-Demand Ink Jet Devices
,”
IBM J. Res. Dev.
,
28
(
3
), pp.
314
321
.
50.
Dijksman
,
J. F.
,
Duineveld
,
P. C.
,
Hack
,
M. J. J.
,
Pierik
,
A.
,
Rensen
,
J.
,
Rubingh
,
J. E.
,
Schram
,
I.
, and
Vernhout
,
M. M.
,
2007
, “
Precision Ink Jet Printing of Polymer Light Emitting Displays
,”
J. Mater. Chem.
,
17
(
6
), pp.
511
522
.
51.
Chunfeng
,
Z.
,
Pengtao
,
Y.
, and
Feng
,
J. J.
,
2006
, “
Formation of Simple and Compound Drops in Microfluidic Devices
,”
Phys. Fluids
,
18
(
9
), p.
092105
.
52.
Dijksman
,
J. F.
,
1984
, “
Hydrodynamics of Small Tubular Pumps
,”
J. Fluid Mech.
,
139
, pp.
173
191
.
53.
Dijksman
,
J. F.
,
1998
, “
Hydro-Acoustics of Piezoelectrically Driven Ink-Jet Print Heads
,”
Flow Turbul. Combust.
,
61
(
1–4
), pp.
211
237
.
You do not currently have access to this content.