Both electrically assisted tension (EAT) and thermally assisted tension (TAT) tests were performed on SS304 and pure copper to decouple the influence of elevated temperature from electric current on flow stress and ductility. It is found that the reduction on flow stress and ductility of SS304 are more dependent on the elevated temperature than electric current, but electric current has a stronger effect by 10% on reducing flow stress and ductility of pure copper than the elevated temperature does. As the flow stress and ductility of two metals are related to the dislocation evolution, a constitutive model considering both storage and annihilation process of dislocation was established to describe the effect of electric current and temperature on dislocation movement. It is found that electric current accelerated the annihilation process of dislocation in pure copper up to 20% in EAT compared with that in TAT, but such phenomenon was rarely observed in SS304. Furthermore, attempts have also been made to distinguish the influence of elevated temperature with that of electric current on microstructure evolution and it is also found that the formation of [111] crystals in pure copper is nearly 10% less in EAT than that in TAT.

References

References
1.
Donnadieu
,
P.
,
Dirras
,
G. F.
, and
Douin
,
J.
,
2002
, “
An Approach of Precipitate/Dislocation Interaction in Age-Hardened Al-Mg-Si Alloys: Measurement of The Strain Field Around Precipitates and Related Simulation of the Dislocation Propagation
,”
Transtec Publications
,
396–402
, pp.
1019
1024
.
2.
Ghavam
,
K.
,
Bagheriasl
,
R.
, and
Worswick
,
M. J.
,
2014
, “
Analysis of Nonisothermal Deep Drawing of Aluminum Alloy Sheet With Induced Anisotropy and Rate Sensitivity at Elevated Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011006
.
3.
Ju
,
L.
,
Patil
,
S.
,
Dykeman
,
J.
, and
Altan
,
T.
,
2015
, “
Forming of Al 5182-O in a Servo Press at Room and Elevated Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051009
.
4.
Troitskii
,
O. A.
,
1969
, “
Electromechanical Effect in Metals
,”
ZhETF Pis. Red.
,
10
(1), pp.
18
22
.
5.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of dc on the Formability of Ti–6Al–4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
.
6.
Zhu
,
R. F.
,
Tang
,
G. Y.
,
Shi
,
S. Q.
, and
Fu
,
M. W.
,
2013
, “
Effect of Electroplastic Rolling on the Ductility and Superelasticity of TiNi Shape Memory Alloy
,”
Mater. Des.
,
44
, pp.
606
611
.
7.
Xu
,
Z.
,
Tang
,
G.
,
Tian
,
S.
,
Ding
,
F.
, and
Tian
,
H.
,
2007
, “
Research of Electroplastic Rolling of AZ31 Mg Alloy Strip
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
128
133
.
8.
Xu
,
Q.
,
Tang
,
G.
,
Jiang
,
Y.
,
Hu
,
G.
, and
Zhu
,
Y.
,
2011
, “
Accumulation and Annihilation Effects of Electropulsing on Dynamic Recrystallization in Magnesium Alloy
,”
Mater. Sci. Eng., A
,
528
(
7–8
), pp.
3249
3252
.
9.
Samei
,
J.
,
Green
,
D. E.
, and
Golovashchenko
,
S.
,
2014
, “
Analysis of Failure in Dual Phase Steel Sheets Subject to Electrohydraulic Forming
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051010
.
10.
Decker
,
B. Y.
, and
Gan
,
Y. X.
,
2015
, “
Electric Field-Assisted Additive Manufacturing Polyaniline Based Composites for Thermoelectric Energy Conversion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
024504
.
11.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng., A
,
287
(
2
), pp.
276
287
.
12.
Molotskii
,
M.
, and
Fleurov
,
V.
,
1995
, “
Magnetic Effects in Electroplasticity of Metals
,”
Phys. Rev. B
,
52
(
22
), p.
15829
.
13.
Li
,
D.
,
Yu
,
E.
, and
Liu
,
Z.
,
2013
, “
Microscopic Mechanism and Numerical Calculation of Electroplastic Effect on Metal's Flow Stress
,”
Mater. Sci. Eng., A
,
580
, pp.
410
413
.
14.
Cao
,
W.
, and
Conrad
,
H.
,
1995
, “
Effects of Stacking Fault Energy and Temperature on the Electroplastic Effect in FCC Metals
,”
Micromechanics of Advanced Materials: A Symposium in Honor of Professor James C.M. Li's 70th Birthday: Proceedings of a Symposium
, S.N.G. Chu, Ed., TMS, Warrendale, PA, p. 225.
15.
Cao
,
W.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
,
1989
, “
Measurement of the electroplastic effect in Nb
,”
Journal of Physics E: Scientific Instruments
,
22
(
12
), p.
1026
.
16.
Kinsey
,
B.
,
Cullen
,
G.
,
Jordan
,
A.
, and
Mates
,
S.
,
2013
, “
Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti–6Al–4V
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
279
282
.
17.
Shin
,
H. C.
,
Ha
,
T. K.
, and
Chang
,
Y. W.
,
2001
, “
Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel
,”
Scr. Mater.
,
45
(
7
), pp.
823
829
.
18.
Jiang
,
T.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Analysis of the Electric and Thermal Effects on Mechanical Behavior of SS304 Subjected to Electrically Assisted Forming Process
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061004
.
19.
Dzialo
,
C. M.
,
Siopis
,
M. S.
,
Kinsey
,
B. L.
, and
Weinmann
,
K. J.
,
2010
, “
Effect of Current Density and Zinc Content During Electrical-Assisted Forming of Copper Alloys
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
299
302
.
20.
Cockcroft
,
M. G.
, and
Latham
,
D. J.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
,
96
(
1
), pp.
33
39
.
21.
Zhu
,
Y. H.
,
To
,
S.
,
Lee
,
W. B.
,
Liu
,
X. M.
,
Jiang
,
Y. B.
, and
Tang
,
G. Y.
,
2009
, “
Effects of Dynamic Electropulsing on Microstructure and Elongation of a Zn–Al Alloy
,”
Mater. Sci. Eng., A
,
501
(
1–2
), pp.
125
132
.
22.
Xu
,
Q.
,
Guan
,
L.
,
Jiang
,
Y.
,
Tang
,
G.
, and
Wang
,
S.
,
2010
, “
Improved Plasticity of Mg–Al–Zn Alloy by Electropulsing Tension
,”
Mater. Lett.
,
64
(
9
), pp.
1085
1087
.
23.
Hariharan
,
K.
,
Lee
,
M.-G.
,
Kim
,
M.-J.
,
Han
,
H. N.
,
Kim
,
D.
, and
Choi
,
S.
,
2015
, “
Decoupling Thermal and Electrical Effect in an Electrically Assisted Uniaxial Tensile Test Using Finite Element Analysis
,”
Metall. Mater. Trans. A
,
46
(
7
), pp.
3043
3051
.
24.
Xie
,
H.
,
Dong
,
X.
,
Liu
,
K.
,
Ai
,
Z.
,
Peng
,
F.
,
Wang
,
Q.
,
Chen
,
F.
, and
Wang
,
J.
,
2015
, “
Experimental Investigation on Electroplastic Effect of DP980 Advanced High Strength Steel
,”
Mater. Sci. Eng., A
,
637
, pp.
23
28
.
25.
Zhu
,
R. F.
,
Liu
,
J. N.
,
Tang
,
G. Y.
,
Shi
,
S. Q.
, and
Fu
,
M. W.
,
2012
, “
Properties, Microstructure and Texture Evolution of Cold Rolled Cu Strips Under Electropulsing Treatment
,”
J. Alloys Compd.
,
544
, pp.
203
208
.
26.
Jiang
,
Y.
,
Tang
,
G.
,
Shek
,
C.
,
Xie
,
J.
,
Xu
,
Z.
, and
Zhang
,
Z.
,
2012
, “
Mechanism of Electropulsing Induced Recrystallization in a Cold-Rolled Mg–9Al–1Zn Alloy
,”
J. Alloys Compd.
,
536
, pp.
94
105
.
27.
Ma
,
B.
,
Zhao
,
Y.
,
Ma
,
J.
,
Guo
,
H.
, and
Yang
,
Q.
,
2013
, “
Formation of Local Nanocrystalline Structure in a Boron Steel Induced by Electropulsing
,”
J. Alloys Compd.
,
549
, pp.
77
81
.
28.
Potapova
,
A. A.
, and
Stolyarov
,
V. V.
,
2011
, “
Structural Changes in Electroplastic Rolling and Annealing of TiNi Alloy Rod
,”
Steel Transl.
,
40
(
10
), pp.
888
891
.
29.
To
,
S.
,
Zhu
,
Y. H.
,
Lee
,
W. B.
,
Liu
,
X. M.
,
Jiang
,
Y. B.
, and
Tang
,
G. Y.
,
2009
, “
Effects of Current Density on Electropulsing-Induced Phase Transformations in a Zn–Al Based Alloy
,”
Appl. Phys. A
,
96
(
4
), pp.
939
944
.
30.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2013
, “
Experimental Study of Electro-Plastic Effect on Advanced High Strength Steels
,”
Mater. Sci. Eng., A
,
582
, pp.
211
218
.
31.
Prasad
,
Y.
, and
Seshacharyulu
,
T.
,
1998
, “
Modelling of Hot Deformation for Microstructural Control
,”
Int. Mater. Rev.
,
43
(
6
), pp.
243
258
.
32.
Poliak
,
E. I.
, and
Jonas
,
J. J.
,
2003
, “
Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation
,”
ISIJ Int.
,
43
(
5
), pp.
684
691
.
33.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041003
.
34.
Wang
,
L.
,
Ji
,
S.
, and
Sun
,
J.
,
2006
, “
Effect of Nitriding Time on the Nitrided Layer of AISI 304 Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
200
(
16
), pp.
5067
5070
.
35.
Conrad
,
H.
,
2002
, “
Thermally Activated Plastic Flow of Metals and Ceramics With an Electric Field or Current
,”
Mater. Sci. Eng., A
,
322
(
1
), pp.
100
107
.
36.
Magargee
,
J.
,
Fan
,
R.
, and
Cao
,
J.
,
2013
, “
Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061022
.
37.
Sieurin
,
H.
,
Zander
,
J.
, and
Sandström
,
R.
,
2006
, “
Modelling Solid Solution Hardening in Stainless Steels
,”
Mater. Sci. Eng., A
,
415
(
1–2
), pp.
66
71
.
38.
Stewart
,
G. R.
, and
Jonas
,
J. J.
,
2004
, “
Static and Dynamic Strain Aging at High Temperatures in 304 Stainless Steel
,”
ISIJ Int.
,
44
(
7
), pp.
1263
1272
.
39.
Hogström
,
P.
,
Ringsberg
,
J. W.
, and
Johnson
,
E.
,
2009
, “
An Experimental and Numerical Study of the Effects of Length Scale and Strain State on the Necking and Fracture Behaviours in Sheet Metals
,”
Int. J. Impact Eng.
,
36
(
10
), pp.
1194
1203
.
40.
Malygin
,
G. A.
,
2005
, “
Analysis of Structural Factors That Control Necking During Tension of FCC Metals and Alloys
,”
Phys. Solid State
,
47
(
2
), pp.
246
251
.
41.
Bilyk
,
S. R.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2005
, “
Finite Deformations of Metal Cylinders Subjected to Electromagnetic Fields and Mechanical Forces
,”
J. Mech. Phys. Solids
,
53
(
3
), pp.
525
544
.
42.
Gallo
,
F.
,
Satapathy
,
S.
, and
Ravi-Chandar
,
K.
,
2012
, “
Plastic Deformation in Electrical Conductors Subjected to Short-Duration Current Pulses
,”
Mech. Mater.
,
55
, pp.
146
162
.
43.
Burakovsky
,
L.
,
Greeff
,
C. W.
, and
Preston
,
D. L.
,
2003
, “
Analytic Model of the Shear Modulus at All Temperatures and Densities
,”
Phys. Rev. B
,
67
, p.
094107
.
44.
Li
,
Y. J.
,
Zeng
,
X. H.
, and
Blum
,
W.
,
2004
, “
Transition From Strengthening to Softening by Grain Boundaries in Ultrafine-Grained Cu
,”
Acta Mater.
,
52
(
17
), pp.
5009
5018
.
45.
Eckert
,
J.
,
Holzer
,
J. C.
,
Krill
,
C. E.
, and
Johnson
,
W. L.
,
1992
, “
Structural and Thermodynamic Properties of Nanocrystalline FCC Metals Prepared by Mechanical Attrition
,”
J. Mater. Res.
,
7
(07), pp.
1751
1761
.
46.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
.
47.
Ding
,
L.
,
Zhang
,
X.
, and
Liu
,
C. R.
,
2014
, “
Dislocation Density and Grain Size Evolution in the Machining of Al6061-T6 Alloys
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041020
.
48.
Hansen
,
N.
, and
Huang
,
X.
,
1998
, “
Microstructure and Flow Stress of Polycrystals and Single Crystals
,”
Acta Mater.
,
46
(
5
), pp.
1827
1836
.
49.
Huang
,
X.
,
Borrego
,
A.
, and
Pantleon
,
W.
,
2001
, “
Polycrystal Deformation and Single Crystal Deformation: Dislocation Structure and Flow Stress in Copper
,”
Mater. Sci. Eng., A
,
319
, pp.
237
241
.
50.
Margulies
,
L.
,
Winther
,
G.
, and
Poulsen
,
H. F.
,
2001
, “
In Situ Measurement of Grain Rotation During Deformation of Polycrystals
,”
Science
,
291
(
5512
), pp.
2392
2394
.
You do not currently have access to this content.