Numerical and experimental analyses of milling bifurcations, or instabilities, are detailed. The time-delay equations of motions that describe milling behavior are solved numerically and once-per-tooth period sampling is used to generate Poincaré maps. These maps are subsequently used to study the stability behavior, including period-n bifurcations. Once-per-tooth period sampling is also used to generate bifurcation diagrams and stability maps. The numerical studies are combined with experiments, where milling vibration amplitudes are measured for both stable and unstable conditions. The vibration signals are sampled once-per-tooth period to construct experimental Poincaré maps and bifurcation diagrams. The results are compared to numerical stability predictions. The sensitivity of milling bifurcations to changes in natural frequency and damping is also predicted and observed.

References

References
1.
Arnold
,
R. N.
,
1946
, “
The Mechanism of Tool Vibration in the Cutting of Steel
,”
Institute of Mechanical Engineers
,
154
(
1
), pp.
261
284
.
2.
Doi
,
S.
, and
Kato
,
S.
,
1956
, “
Chatter Vibration of Lathe Tools
,”
Trans. ASME
,
78
, pp.
1127
1134
.
3.
Tobias
,
S. A.
, and
Fishwick
,
W.
,
1958
, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
Trans. ASME
,
80
, pp.
1079
1088
.
4.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,” Proceedings of the ASME International Research in Production Engineering, pp.
465
474
.
5.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Wiley
,
New York
.
6.
Merritt
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
447
454
.
7.
Tlusty
,
J.
, and
Polacek
,
M.
,
1968
, “
Experience With Analysing Stability of Machine Tool Against Chatter
,”
9th MTDR Conference
, pp.
521
570
.
8.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A General Formulation of the Milling Process Equation
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
317
324
.
9.
Hohn
,
R. E.
,
Shridar
,
R.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for a Special Case of the Milling Process
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
326
329
.
10.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for the General Milling Process
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
330
334
.
11.
Hanna
,
N. H.
, and
Tobias
,
S. A.
,
1974
, “
A Theory of Nonlinear Regenerative Chatter
,”
ASME J. Eng. Ind.
,
96
(
1
), pp.
247
255
.
12.
Tlusty
,
J.
, and
Ismail
,
F.
,
1981
, “
Basic Non-Linearity in Machining Chatter
,”
Ann. CIRP
,
30
(
1
), pp.
299
304
.
13.
Tlusty
,
J.
, and
Ismail
,
F.
,
1983
, “
Special Aspects of Chatter in Milling
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
105
(
1
), pp.
24
32
.
14.
Tlusty
,
J.
,
1985
, “
Machine Dynamics
,”
Handbook of High-Speed Machining Technology
,
R. I.
King
, ed.,
Chapman and Hall
,
New York
, pp.
48
153
.
15.
Tlusty
,
J.
,
1986
, “
Dynamics of High-Speed Milling
,”
ASME J. Eng. Ind.
,
108
(
2
), pp.
59
67
.
16.
Minis
,
I.
, and
Yanusevsky
,
R.
,
1993
, “
A New Theoretical Approach for Prediction of Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
1
8
.
17.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
Ann. CIRP
,
44
(
1
), pp.
357
362
.
18.
Davies
,
M. A.
,
Dutterer
,
B. S.
,
Pratt
,
J. R.
, and
Schaut
,
A. J.
,
1998
, “
On the Dynamics of High-Speed Milling With Long, Slender Endmills
,”
Ann. CIRP
,
47
(
1
), pp.
55
60
.
19.
Moon
,
F. C.
, and
Kalmár-Nagy
,
T.
,
2001
, “
Nonlinear Models for Complex Dynamics in Cutting Materials
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
695
711
.
20.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B. S.
, and
Burns
,
T. J.
,
2000
, “
The Stability of Low Radial Immersion Milling
,”
Ann. CIRP
,
49
(
1
), pp.
37
40
.
21.
Moon
,
F. C.
,
1994
, “
Chaotic Dynamics and Fractals in Material Removal Processes
,”
Nonlinearity and Chaos in Engineering Dynamics
,
J.
Thompson
, and
S.
Bishop
, eds.,
Wiley
,
New York
.
22.
Bukkapatnam
,
S.
,
Lakhtakia
,
A.
, and
Kumara
,
S.
,
1995
, “
Analysis of Senor Signals Shows Turning on a Lathe Exhibits Low-Dimensional Chaos
,”
Phys. Rev. E
,
52
(
3
), pp.
2375
2387
.
23.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
,
1997
, “
Nonlinear Regenerative Machine Tool Vibrations
,” ASME Paper No. DETC 97/VIB-4021.
24.
Nayfey
,
A.
,
Chin
,
C.
, and
Pratt
,
J.
,
1998
, “
Applications of Perturbation Methods to Tool Chatter Dynamics
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
.
25.
Minis
,
I.
, and
Berger
,
B. S.
,
1998
, “
Modelling, Analysis, and Characterization of Machining Dynamics
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
.
26.
Moon
,
F. C.
, and
Johnson
,
M.
,
1998
, “
Nonlinear 2 and Chaos in Manufacturing Processes
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
.
27.
Smith
,
K. S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
J. Eng. Ind.
,
113
(
2
), pp.
169
175
.
28.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
29.
Zhao
,
M. X.
, and
Balachandran
,
B.
,
2001
, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
2233
2248
.
30.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
225
.
31.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling—Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
.
32.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling—Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
25
34
.
33.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.
34.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Vibration Frequencies in High-Speed Milling Processes or A Positive Answer to Davies, Pratt, Dutterer, and Burns
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
481
487
.
35.
Mann
,
B. P.
,
Bayly
,
P. V.
,
Davies
,
M. A.
, and
Halley
,
J. E.
,
2004
, “
Limit Cycles, Bifurcations, and Accuracy of the Milling Process
,”
J. Sound Vib.
,
277
(
1–2
), pp.
31
48
.
36.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
37.
Govekar
,
E.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stepan
,
G.
, and
Grabec
,
I.
,
2005
, “
On Stability and Dynamics of Milling at Small Radial Immersion
,”
Ann. CIRP
,
54
(
1
), pp.
357
362
.
38.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2005
, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
7–8
), pp.
769
781
.
39.
Mann
,
B. P.
,
Garg
,
N. K.
,
Young
,
K. A.
, and
Helvey
,
A. M.
,
2005
, “
Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration
,”
Nonlinear Dyn.
,
42
(
4
), pp.
319
337
.
40.
Stépán
,
G.
,
Szalai
,
R.
,
Mann
,
B. P.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradisek
,
J.
, and
Govekar
,
E.
,
2005
, “
Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
197
203
.
41.
Zatarain
,
M.
,
Muñoa
,
J.
,
Peigné
,
G.
, and
Insperger
,
T.
,
2006
, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
Ann. CIRP
,
55
(
1
), pp.
365
368
.
42.
Insperger
,
T.
,
Munoa
,
J.
,
Zatarain
,
M. A.
, and
Peigné
,
G.
,
2006
, “
Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle
,”
CIRP 2nd International Conference on High Performance Cutting
, Vancouver, Canada, June 12–13, pp.
12
13
.
43.
Patel
,
B. R.
,
Mann
,
B. P.
, and
Young
,
K. A.
,
2008
, “
Uncharted Islands of Chatter Instability in Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
124
134
.
44.
Schmitz
,
T.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
45.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
46.
Schmitz
,
T.
,
Davies
,
M.
,
Medicus
,
K.
, and
Snyder
,
J.
,
2001
, “
Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis
,”
Ann. CIRP
,
50
(
1
) pp.
263
268
.
47.
Schmitz
,
T.
,
Medicus
,
K.
, and
Dutterer
,
B.
,
2002
, “
Exploring Once-Per-Revolution Audio Signal Variance as a Chatter Indicator
,”
Mach. Sci. Technol.
,
6
(
2
), pp.
215
233
.
48.
Schmitz
,
T.
,
2003
, “
Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal
,”
J. Sound Vib.
,
262
(
3
), pp.
721
730
.
49.
Ransom
,
T.
,
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Tunable Dynamics Platform for Milling Experiments
,”
Precis. Eng.
,
44
, pp.
252
256
.
You do not currently have access to this content.