Fixturing of components during laser cladding can incur significant conductive thermal losses. However, due to the surface roughness at contact, interfacial conduction is impeded. The effective contact conductivity, known as gap conductance, is much lower than the contacting material conductivities. This work investigates modeling conduction losses to fixturing bodies during laser cladding. Two laser cladding experiments are performed using contrasting fixturing schemes: one cantilevered substrate with a minimal substrate-fixture contact area and one with a substrate bolted to a work bench, with a significant substrate-fixture contact area. Using calibrated gap conductance values, error for the cantilevered fixture model decreases from 20.5% to 6.49% in the contact region, while the bench fixtured model error decreases from a range of 60–102% to 11–45%. The improvement in accuracy shows the necessity of accounting for conduction losses in the thermal modeling of laser cladding, particularly for fixturing setups with large areas of contact.

References

References
1.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smugeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
,
1996
, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Solid Freeform Fabrication Proceedings
, The University of Texas at Austin, Austin, TX, Vol.
9
, pp.
125
131
.
2.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
, and
Hetzner
,
D.
,
1997
, “
The Direct Metal Deposition of H13 Tool Steel for 3D Components
,”
J. Miner. Met. Mater. Soc.
,
49
(
5
), pp.
55
60
.
3.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Smugeresky
,
J. E.
,
Wert
,
M. J.
, and
Nelson
,
D. V.
,
1999
, “
Understanding Thermal Behavior in the LENS Process
,”
Mater. Des.
,
20
(
2–3
), pp.
107
113
.
4.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
In Situ Monitoring and Characterization of Distortion During Laser Cladding of Inconel® 625
,”
J. Mater. Process. Technol.
,
220
, pp.
135
145
.
5.
Gouge
,
M. F.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Modeling Forced Convection in the Thermal Simulation of Laser Cladding Processes
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
307
320
.
6.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
7.
Zavarise
,
G.
,
Wriggers
,
P.
,
Stein
,
E.
, and
Schrefler
,
B. A.
,
1992
, “
Real Contact Mechanisms and Finite Element Formulation: A Coupled Thermomechanical Approach
,”
Int. J. Numer. Methods Eng.
,
35
(
4
), pp.
767
785
.
8.
Song
,
S.
,
Yovanovich
,
M. M.
, and
Goodman
,
F. O.
,
1993
, “
Thermal Gap Conductance of Conforming Surfaces in Contact
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
533
540
.
9.
Nishino
,
K.
,
Yamashita
,
S.
, and
Torii
,
K.
,
1995
, “
Thermal Contact Conductance Under Low Applied Load in a Vacuum Environment
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
258
271
.
10.
Wahid
,
S.
, and
Madhusudana
,
C. V.
,
2003
, “
Thermal Contact Conductance: Effect of Overloading and Load Cycling
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
4139
4143
.
11.
Gmelin
,
E.
,
Asen-Palmer
,
M.
,
Reuther
,
M.
, and
Villar
,
R.
,
1999
, “
Thermal Boundary Resistance of Mechanical Contacts Between Solids at Sub-Ambient Temperatures
,”
J. Phys. D: Appl. Phys.
,
32
(
6
), pp.
R19
R43
.
12.
Kar
,
A.
, and
Mazumder
,
J.
,
1987
, “
One-Dimensional Diffusion Model for Extended Solid Solution in Laser Cladding
,”
J. Appl. Phys.
,
61
(
7
), pp.
2645
2655
.
13.
Ghosh
,
S.
, and
Choi
,
J.
,
2006
, “
Modeling and Experimental Verification of Transient/Residual Stresses and Microstructure Formation in Multi-Layer Laser Aided DMD Process
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
662
679
.
14.
Anca
,
A.
,
Fachinotti
, V
. D.
,
Escobar-Palafox
,
G.
, and
Cardona
,
A.
,
2011
, “
Computational Modelling of Shaped Metal Deposition
,”
Int. J. Numer. Methods Eng.
,
85
(
1
), pp.
84
106
.
15.
Zhu
,
G.
,
Zhang
,
A.
,
Li
,
D.
,
Tang
,
Y.
,
Tong
,
Z.
, and
Lu
,
Q.
,
2011
, “
Numerical Simulation of Thermal Behavior During Laser Direct Metal Deposition
,”
Int. J. Adv. Manuf. Technol.
,
55
(
9–12
), pp.
945
954
.
16.
Hao
,
M.
, and
Sun
,
Y.
,
2013
, “
A FEM Model for Simulating Temperature Field in Coaxial Laser Cladding of Ti6Al4V Alloy Using an Inverse Modeling Approach
,”
Int. J. Heat Mass Transfer
,
64
, pp.
352
360
.
17.
Tseng
,
W. C.
, and
Aoh
,
J. N.
,
2013
, “
Simulation Study on Laser Cladding on Preplaced Powder Layer With a Tailored Laser Heat Source
,”
Opt. Laser Technol.
,
48
, pp.
141
152
.
18.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
,
1992
, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
,
23
(
5
), pp.
631
642
.
19.
Hofmeister
,
W.
,
Wert
,
M.
,
Smugeresky
,
J.
,
Philliber
,
J. A.
,
Griffith
,
M.
, and
Ensz
,
M.
,
1999
, “
Investigation of Solidification in the Laser Engineered Net Shaping (LENS™) Process
,”
J. Miner. Met. Mater. Soc.
,
51
(
7
), pp.
1
6
.
20.
Klingbeil
,
N. W.
,
Beuth
,
J. L.
,
Chin
,
R. K.
, and
Amon
,
C. H.
,
2002
, “
Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,”
Int. J. Mech. Sci.
,
44
(
1
), pp.
57
77
.
21.
Aggarangsi
,
P.
,
Beuth
,
J. L.
, and
Gill
,
D. D.
,
2004
, “
Transient Changes in Melt Pool Size in Laser Additive Manufacturing Processes
,”
Solid Freeform Fabrication Proceedings
, University of Texas, Austin, TX, pp.
163
174
.
22.
Wang
,
L.
, and
Felicelli
,
S.
,
2006
, “
Analysis of Thermal Phenomena in LENS Deposition
,”
Mater. Sci. Eng. A
,
435–436
, pp.
625
631
.
23.
Wang
,
L.
, and
Felicelli
,
S.
,
2007
, “
Process Modeling in Laser Deposition of Multilayer SS410 Steel
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1028
1034
.
24.
Kamara
,
A. M.
,
Marimuthu
,
S.
, and
Li
,
L.
,
2011
, “
A Numerical Investigation Into Residual Stress Characteristics in Laser Deposited Multiple Layer Waspaloy Parts
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031013
.
25.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
26.
Michaleris
,
P.
, and
DeBiccari
,
A.
,
1997
, “
Prediction of Welding Distortion
,”
Weld. J. Incl. Weld. Res. Suppl.
,
76
(
4
), pp.
172s
118s
.
27.
Ageorges
,
C.
,
Ye
,
L.
,
Mai
,
Y. W.
, and
Hou
,
M.
,
1998
, “
Characteristics of Resistance Welding of Lap Shear Coupons—Part I: Heat Transfer
,”
Compos. Part A: Appl. Sci. Manuf.
,
29
(
8
), pp.
899
909
.
28.
Khandkar
,
M. Z. H.
,
Khan
,
J. A.
, and
Reynolds
,
A. P.
,
2003
, “
Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model
,”
Sci. Technol. Weld. Joining
,
8
(
3
), pp.
165
174
.
29.
Soundararajan
,
V.
,
Zekovic
,
S.
, and
Kovacevic
,
R.
,
2005
, “
Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061
,”
Int. J. Mach. Tools Manuf.
,
45
(
14
), pp.
1577
1587
.
30.
Colegrove
,
P. A.
,
Shercliff
,
H. R.
, and
Zettler
,
R.
,
2007
, “
Model for Predicting Heat Generation and Temperature in Friction Stir Welding From the Material Properties
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
284
297
.
31.
Li
,
T.
,
Shi
,
Q. Y.
, and
Li
,
H.-K.
,
2007
, “
Residual Stresses Simulation for Friction Stir Welded Joint
,”
Sci. Technol. Weld. Joining
,
12
(
8
), pp.
664
670
.
32.
Awang
,
M.
, and
Mucino
, V
. H.
,
2010
, “
Energy Generation During Friction Stir Spot Welding (FSSW) of Al 6061-T6 Plates
,”
Mater. Manuf. Process.
,
25
(
1–3
), pp.
167
174
.
33.
Hamilton
,
C.
,
Dymek
,
S.
, and
Sommers
,
A.
,
2008
, “
A Thermal Model of Friction Stir Welding in Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1120
1130
.
34.
Zain-ul Abdein
,
M.
,
Nelias
,
D.
,
Jullien
,
J. F.
, and
Deloison
,
D.
,
2009
, “
Prediction of Laser Beam Welding-Induced Distortions and Residual Stresses by Numerical Simulation for Aeronautic Application
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2907
2917
.
35.
Yu
,
M.
,
Li
,
W. Y.
,
Li
,
J. L.
, and
Chao
,
Y. J.
,
2012
, “
Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method
,”
Mater. Sci. Technol.
,
28
(
7
), pp.
812
817
.
36.
Wang
,
H.
,
Colegrove
,
P. A.
, and
Mehnen
,
J.
,
2014
, “
Hybrid Modelling of the Contact Gap Conductance Heat Transfer in Welding Process
,”
Adv. Eng. Software
,
68
, pp.
19
24
.
37.
Li
,
H.
, and
Liu
,
D.
,
2014
, “
Simplified Thermo-Mechanical Modeling of Friction Stir Welding With a Sequential FE Method
,”
Int. J. Model. Optim.
,
4
(
5
), pp.
410
416
.
38.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R. A.
,
2006
, “
Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
6
), pp.
875
885
.
39.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.
40.
Special Metals
,
2006
, “
Inconel Alloy 625
,” Technical Report No. SMC-063.
41.
Matweb
,
2014
, “
Constellium Alplan 6061 Rolled Precision Aluminum Plate, Milled Both Sides
,” Technical Report No. 160267.
42.
Matweb
,
2014
, “
ASTM A36 Steel, Plate
,” Technical Report No. 14017.
43.
Matweb
,
2014
, “
AISI 1018 Steel, Cold Drawn, High Temperature, Stress Relieved, 16-22 mm (0.625-0.875 in) Round
,” Technical Report. No. 6817.
44.
Allegheny Ludlum Corporation
,
1998
, “
Technical Data Blue Sheet: Stainless Steels
,” Technical Report No. B107/ED19/1298/SW.
45.
Chang
,
P. H.
, and
Teng
,
T. L.
,
2004
, “
Numerical and Experimental Investigations on the Residual Stresses of the Butt-Welded Joints
,”
Comput. Mater. Sci.
,
29
(
4
), pp.
511
522
.
46.
Omega Engineering
,
1998
,
Non-Contact Temperature Measurement
,
2nd ed.
, Vol.
1
,
Omega Engineering
,
Stamford, CT
.
47.
MIKRON
,
2014
, “
Table of Emissivity of Various Surfaces
,” Technical Report No. 2.
48.
Floreen
,
S.
,
Fuchs
,
G. E.
, and
Yang
,
W. J.
,
1994
, “
The Metallurgy of Alloy 625
,”
Superalloys
,
718
(
625
), pp.
13
37
.
49.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
50.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
You do not currently have access to this content.