The expanding use of materials that are difficult to join with traditional techniques drives an urgent need, in a wide array of industries, to develop and characterize production capable joining processes. Friction stir blind riveting (FSBR) is such a process. However, full adoption of FSBR requires more complete characterization of the process. The relatively inexpensive, portable FSBR machine discussed here facilitates in situ X-ray imaging of the FSBR process, which will enhance the ability of researchers to understand and improve the FSBR process. Real-time, unobstructed, angular X-ray access drives the functional requirements and design considerations of the machine. The acute angular access provided by the machine necessitates tradeoffs in stiffness and Abbe errors. An error budget quantifies the effect of the various trade-offs on likely sensitive directions and relationships. Additionally, the machine motivates more test parameters important to machine designers (e.g., parallelism and runout) that have not yet been explored in the literature. Ultimately, a machine has been developed, which has a single rotational axis that translates parallel to the rotational axis, can be built for under $12,000, has a mass of less than 110 kg, measures 915 mm × 254 mm × 624 mm, has a rotational speed range of 400–8000 RPM, has a feed rate range of 0.1–200 mm/min, can be installed on most test benches, has total rivet runout of 0.1 mm, has plunge and rotational axis parallelism of less than 0.1 deg, and has a plunge axis repeatability of better than 2 μ m over a 10 mm range.

References

References
1.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
,
2015
, “
A Parametric Study on Laser Welding of Magnesium Alloy AZ31 by a Fiber Laser
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041003
.
2.
Satoh
,
G.
,
Qiu
,
C.
,
Naveed
,
S.
, and
Yao
,
Y. L.
,
2015
, “
Strength and Phase Identification of Autogenous Laser Brazed Dissimilar Metal Microjoints
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011012
.
3.
Ma
,
X.
,
Howard
,
S. M.
, and
Jasthi
,
B. K.
,
2014
, “
Friction Stir Welding of Bulk Metallic Glass Vitreloy 106a
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051012
.
4.
Cao
,
R.
,
Sun
,
J.
,
Chen
,
J.
, and
Wang
,
P.-C.
,
2014
, “
Cold Metal Transfer Joining of Aluminum AA6061-T6-to-Galvanized Boron Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051015
.
5.
Hansen
,
S. R.
,
Vivek
,
A.
, and
Daehn
,
G. S.
,
2015
, “
Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051013
.
6.
Nassar
,
S. A.
,
Wu
,
Z.
,
Moustafa
,
K.
, and
Tzelepis
,
D.
,
2015
, “
Effect of Adhesive Nanoparticle Enrichment on Static Load Transfer Capacity and Failure Mode of Bonded Steel–Magnesium Single Lap Joints
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051024
.
7.
Nassar
,
S. A.
, and
Sakai
,
K.
,
2015
, “
Effect of Cyclic Heat, Humidity, and Joining Method on the Static and Dynamic Performance of Lightweight Multimaterial Single-Lap Joints
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051026
.
8.
Nassar
,
S. A.
, and
Kazemi
,
A.
,
2015
, “
Clamp Load Decay Due to Material Creep of Lightweight-Material Joints Under Cyclic Temperature
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051025
.
9.
Briskham
,
P.
,
Blundell
,
N.
,
Han
,
L.
,
Hewitt
,
R.
,
Young
,
K.
, and
Boomer
,
D.
,
2006
, “
Comparison of Self-Pierce Riveting, Resistance Spot Welding and Spot Friction Joining for Aluminium Automotive Sheet
,”
SAE
Technical Paper No. 2006-01-0774.
10.
Gao
,
D.
,
Ersoy
,
U.
,
Stevenson
,
R.
, and
Wang
,
P.-C.
,
2009
, “
A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061002
.
11.
Pei-Chung Wang
,
R. S.
,
2006
, “
Friction Stir Rivet Method of Joining
,” U. S. Patent No. 7,862,271.
12.
Min
,
J.
,
Li
,
Y.
,
Carlson
,
B. E.
,
Hu
,
S. J.
,
Li
,
J.
, and
Lin
,
J.
,
2015
, “
A New Single-Sided Blind Riveting Method for Joining Dissimilar Materials
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
13
16
.
13.
Min
,
J.
,
Li
,
Y.
,
Li
,
J.
,
Carlson
,
B. E.
, and
Lin
,
J.
,
2015
, “
Mechanics in Frictional Penetration With a Blind Rivet
,”
J. Mater. Process. Technol.
,
222
, pp.
268
279
.
14.
Min
,
J.
,
Li
,
J.
,
Li
,
Y.
,
Carlson
,
B. E.
,
Lin
,
J.
, and
Wang
,
W.-M.
,
2015
, “
Friction Stir Blind Riveting for Aluminum Alloy Sheets
,”
J. Mater. Process. Technol.
,
215
, pp.
20
29
.
15.
Min
,
J.
,
Li
,
J.
,
Li
,
Y.
,
Carlson
,
B. E.
, and
Lin
,
J.
,
2016
, “
Affected Zones in an Aluminum Alloy Frictionally Penetrated by a Blind Rivet
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
054501
.
16.
Min
,
J.
,
Li
,
J.
,
Carlson
,
B. E.
,
Li
,
Y.
,
Quinn
,
J. F.
,
Lin
,
J.
, and
Wang
,
W.
,
2015
, “
Friction Stir Blind Riveting for Joining Dissimilar Cast Mg AM60 and Al Alloy Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051022
.
17.
Lampeas
,
G. N.
, and
Diamantakos
,
I. D.
,
2015
, “
Effects of Nonconventional Tools on the Thermo-Mechanical Response of Friction Stir Welded Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051020
.
18.
Lazarevic
,
S.
,
Ogata
,
K. A.
,
Miller
,
S. F.
,
Kruger
,
G. H.
, and
Carlson
,
B. E.
,
2015
, “
Formation and Structure of Work Material in the Friction Stir Forming Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051018
.
19.
Mustafa
,
F. F.
,
Kadhym
,
A. H.
, and
Yahya
,
H. H.
,
2015
, “
Tool Geometries Optimization for Friction Stir Welding of AA6061-T6 Aluminum Alloy T-Joint Using Taguchi Method to Improve the Mechanical Behavior
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031018
.
20.
Fehrenbacher
,
A.
,
Smith
,
C. B.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2014
, “
Combined Temperature and Force Control for Robotic Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021007
.
21.
Fehrenbacher
,
A.
,
Schmale
,
J. R.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021009
.
22.
Miller
,
S. F.
,
Tao
,
J.
, and
Shih
,
A. J.
,
2006
, “
Friction Drilling of Cast Metals
,”
Int. J. Mach. Tools Manuf.
,
46
(
12
), pp.
1526
1535
.
23.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
24.
Uriarte
,
L.
,
Herrero
,
A.
,
Zatarain
,
M.
,
Santiso
,
G.
,
de Lacalle
,
L. L.
,
Lamikiz
,
A.
, and
Albizuri
,
J.
,
2007
, “
Error Budget and Stiffness Chain Assessment in a Micromilling Machine Equipped With Tools Less Than 0.3 mm in Diameter
,”
Precis. Eng.
,
31
(
1
), pp.
1
12
.
25.
Barber
,
J.
, and
Cardou
,
A.
,
2001
, “
Intermediate Mechanics of Materials
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
B104
B105
.
26.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1990
,
Mechanics of Materials PWS
,
KENT Publishing Company, Elsevier Science BV
,
Amsterdam, Netherlands
.
27.
Oberg
,
E.
,
2012
,
Machinery's Handbook 29th Edition-Full Book
,
Industrial Press
,
South Norwalk, CT
.
28.
McCutcheon
,
W. J.
,
1983
, “
Deflections and Stresses in Circular Tapered Beams and Poles
,”
Civ. Eng. Pract. Des. Eng.
,
2
, pp.
207
233
.
You do not currently have access to this content.