Traditionally, industrial sheet metal forming technologies use rigid metallic tools to plastically deform the blanks. In order to reduce the tooling costs, rubber or flexible tools can be used together with one rigid (metallic) die or punch, in order to enforce a predictable and repeatable geometry of the stamped parts. If the complete tooling setup is built with deformable tools, the final part quality and geometry are hardly predictable and only a prototypal production is generally possible. The aim of this paper is to present the development of an automatic tool design procedure, based on the explicit FEM simulation of a stamping process, coupled to a geometrical tool compensation algorithm. The FEM simulation model has been first validated by comparing the experiments done at different levels of the process parameters. After the experimental validation of the FEM model, a compensation algorithm has been implemented for reducing the error between the simulated component and the designed one. The tooling setup is made of machined thermoset polyurethane (PUR) punch, die, and blank holder, for the deep drawing of an aluminum part. With respect to conventional steel dies, the plastic tools used in the test case are significantly more economic. The proposed procedure is iterative. It allows, already after the first iteration, to reduce the geometrical deviation between the actual stamped part and the designed geometry. This methodology represents one step toward the transformation of the investigated process from a prototyping technique into an industrial process for small and medium batch sizes.

References

References
1.
Malhotra
,
R.
,
Cao
,
J.
,
Ren
,
F.
,
Kiridena
,
V.
,
Cedric Xia
,
Z. Z.
, and
Reddy
,
N. V.
,
2011
, “
Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061019
.
2.
Del Prete
,
A.
,
Papadia
,
G.
, and
Manisi
,
B.
,
2011
, “
Computer Aided Modelling of Rubber Pad Forming Process
,”
Key Eng. Mater.
,
473
, pp.
637
644
.
3.
Son
,
C.-Y.
,
Jeon
,
Y.-P.
,
Kim
,
Y.-T.
, and
Kang
,
C.-G.
,
2012
, “
Evaluation of the Formability of a Bipolar Plate Manufactured From Aluminum Alloy Al 1050 Using the Rubber Pad Forming Process
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
5
), pp.
909
918
.
4.
Ramezani
,
M.
,
Ripin
,
Z. M.
, and
Ahmad
,
R.
,
2010
, “
Sheet Metal Forming With the Aid of Flexible Punch, Numerical Approach and Experimental Validation
,”
CIRP J. Manuf. Sci. Technol.
,
3
(
3
), pp.
196
203
.
5.
Giuseppe Sala
,
2001
, “
A Numerical and Experimental Approach to Optimise Sheet Stamping Technologies: Part II—Aluminium Alloys Rubber-Forming
,”
Mater. Des.
,
22
(
4
), pp.
299
315
.
6.
Ramezani
,
M.
, and
Ripin
,
Z. M.
,
2011
, “
Analysis of Deep Drawing of Sheet Metal Using the Marform Process
,”
Int. J. Adv. Manuf. Technol.
,
59
(
5–8
), pp.
491
505
.
7.
Strano
,
M.
,
2006
, “
Optimization Under Uncertainty of Sheet-Metal-Forming Processes by the Finite Element Method
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
8
), pp.
1305
1315
.
8.
Vollertsen
,
F.
,
Breede
,
R.
, and
Beckman
,
M.
,
2001
, “
Process Layout and Forming Results From Deep Drawing Using Pressurized Membranes
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
7
), pp.
977
990
.
9.
Cai
,
Z.-Y.
,
Wang
,
S.-H.
,
Xu
,
X.-D.
, and
Li
,
M.-Z.
,
2009
, “
Numerical Simulation for the Multi-Point Stretch Forming Process of Sheet Metal
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
396
407
.
10.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Liu
,
Z. H.
,
2014
, “
Rapid Tooling Manufacturing
,”
Handbook of Manufacturing Engineering and Technology
,
Springer
, Heidelberg, Germany, pp. 2526–2549.
11.
Marumo
,
Y.
,
Saiki
,
H.
, and
Ruan
,
L.
,
2005
, “
Influence of Resin Dies and Resin Auxiliary Sheets on Deep Drawability of Metal Foil
,”
J. Mater. Process. Technol.
,
162–163
, pp.
530
533
.
12.
Park
,
Y.
, and
Colton
,
J. S.
,
2005
, “
Failure Analysis of Rapid Prototyped Tooling in Sheet Metal Forming—V-Die Bending
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
116
125
.
13.
Park
,
Y.
, and
Colton
,
J. S.
,
2005
, “
Failure Analysis of Rapid Prototyped Tooling in Sheet Metal Forming—Cylindrical Cup Drawing
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
126
137
.
14.
Park
,
Y.
, and
Colton
,
J. S.
,
2003
, “
Sheet Metal Forming Using Polymer Composite Rapid Prototype Tooling
,”
ASME J. Eng. Mater. Technol.
,
125
(
3
), pp.
247
255
.
15.
Longhi
,
B. H.
, and
Eid
,
C.
,
2013
,
Creative Metal Forming
,
Brynmorgen Press
, Hong Kong.
16.
Durgun
,
I.
,
2015
, “
Sheet Metal Forming Using FDM Rapid Prototype Tool
,”
Rapid Prototyping J.
,
21
(
4
), pp.
412
422
.
17.
Stratasys Industrial Applications, 2016, Metal Hydroforming 3D Printing for Forming Tools, http://www.stratasys.com/solutions/additive-manufacturing/tooling/metal-hydroforming, Stratasys Ltd., Rehovot, Israel.
18.
Witulski
,
J.
,
Trompeter
,
M.
,
Tekkaya
,
A. E.
, and
Kleiner
,
M.
,
2011
, “
High Wear Resistant Deep Drawing Tools Made of Coated Polymers
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
311
314
.
19.
Yang
,
X. A.
, and
Ruan
,
F.
,
2011
, “
A Die Design Method for Springback Compensation Based on Displacement Adjustment
,”
Int. J. Mech. Sci.
,
53
(
5
), pp.
399
406
.
20.
Shen
,
G.
,
Hu
,
P.
,
Zhang
,
X.
,
Chen
,
X.
, and
Li
,
X.
,
2005
, “
Springback Simulation and Tool Surface Compensation Algorithm for Sheet Metal Forming
,”
AIP Conference Proceedings
, p.
334
.
21.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in C
,
Cambridge University Press
, Cambridge, UK.
22.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
,
1996
, “
Tooling and Binder Design for Sheet Metal Forming Processes Compensation Springback Error
,”
Int. J. Mach. Tools Manuf.
,
36
(
4
), pp.
503
536
.
23.
Iorio
,
L.
,
Strano
,
M.
, and
Monno
,
M.
,
2015
, “
Development of a Die Compensation Algorithm for Sheet Metal Stamping With Deformable Tools
,”
Proceedings of the ASME MSEC International Conference
, Vol.
1
: Processing, Charlotte, NC, p.
V001T02A089
.
24.
Amarandei
,
M.
,
Antonio
,
Virga
, and
Berdich
,
K.-N.
,
2013
, “
The Influence of Defects on the Mechanical Properties of Some Polyurethane Materials
,”
Mater. Plast.
,
50
, pp.
84
87
.
25.
GitHub, 2016, “SINTEF, Geometry/GoTools,” https://github.com/SINTEF-Geometry/GoTools, GitHub, Inc., San Francisco, CA.
26.
Lee
,
S.
,
Wolberg
,
G.
, and
Shin
,
S. Y.
,
1997
, “
Scattered Data Interpolation With Multilevel B-Splines
,”
IEEE Trans. Visualization Comput. Graphics
,
3
(
3
), pp.
228
244
.
You do not currently have access to this content.