An accurate description of the directional dependence of uniaxial tensile yielding and plastic flow in advanced high-strength steel sheets may require either a nonassociated plasticity model with separate quadratic yield function and flow potential or an associated plasticity model with nonquadratic yield function. In this paper, Gotoh's fourth-order homogeneous polynomial yield function is applied to model two advanced high-strength steel sheets in an associated plasticity model. Both the parameter selection for calibrating Gotoh's yield function and its positivity and convexity verification are given in some detail. Similarities and differences between the associated plasticity model presented here and the nonassociated one appeared in the literature are discussed in terms of the directional dependence of yield stresses and plastic strain ratios under uniaxial tension and yield stresses under biaxial tension loading.

References

References
1.
Hasan
,
R.
,
Kasikci
,
T.
,
Tsukrov
,
I.
, and
Kinsey
,
B.
,
2014
, “
Numerical and Experimental Investigations of Key Assumptions in Analytical Failure Models for Sheet Metal Forming
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011013
.
2.
Korkolis
,
Y.
,
Li
,
J.
,
Carlson
,
B.
, and
Chu
,
E.
,
2015
, “
Special Issue: Forming and Joining of Lightweight and Multimaterial Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
050201
.
3.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London A
,
193
(
1033
), pp.
281
297
.
4.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
,
UK
.
5.
Gotoh
,
M.
,
1977
, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)
,”
Int. J. Mech. Sci.
,
19
(
9
), pp.
505
520
.
6.
Hill
,
R.
,
1979
, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc.
,
85
(01), pp.
179
191
.
7.
Hosford
,
W.
,
1979
, “
On Yield Loci of Anisotropic Cubic Metals
,”
7th North American Metalworking Conference (NMRC)
, SME, Dearborn, MI, pp.
191
197
.
8.
Hosford
,
W.
,
1993
,
The Mechanics of Crystals and Textured Polycrystals
,
Oxford University Press
,
Oxford
,
UK
.
9.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J.
,
Karabin
,
M.
,
Brem
,
J.
, and
Dick
,
R.
,
2005
, “
Linear Transformation Based Anisotropic Yield Function
,”
Int. J. Plast.
,
21
(
5
), pp.
1009
1039
.
10.
Stoughton
,
T. B.
,
2002
, “
A Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
,
18
(
6
), pp.
687
714
.
11.
Mohr
,
D.
,
Dunand
,
M.
, and
Kim
,
K. H.
,
2010
, “
Evaluation of Associated and Non-Associated Quadratic Plasticity Models for Advanced High Strength Steel Sheets Under Multi-Axial Loading
,”
Int. J. Plast.
,
26
(
7
), pp.
939
956
.
12.
Hill
,
R.
,
1990
, “
Constitutive Modeling of Orthotropic Plasticity in Sheet Metals
,”
J. Mech. Phys. Solids
,
38
(3), pp.
405
417
.
13.
Tong
,
W.
,
2016
, “
On the Parameter Identification of Polynomial Anisotropic Yield Functions
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071002
.
14.
Carrell
,
J. B.
,
2005
, “
Fundamentals of Linear Algebra
.”
15.
Hill
,
R.
,
1980
, “
Basic Stress Analysis of Hyperbolic Regimes in Plastic Media
,”
Math. Proc. Cambridge Philos. Soc.
,
88
(02), pp.
359
369
.
16.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2006
, “
Review of Drucker's Postulate and the Issue of Plastic Stability in Metal Forming
,”
Int. J. Plast.
,
22
(
3
), pp.
391
433
.
17.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
3
), pp.
236
249
.
18.
Raniecki
,
B.
,
1979
, “
Uniqueness Criteria in Solids With Non-Associated Plastic Flow Laws at Finite Deformations
,”
Bull. Acad. Pol. Sci. Ser. Sci. Tech.
,
27
, pp.
391
399
.
19.
Maier
,
G.
, and
Hueckel
,
T.
,
1979
, “
Nonassociated and Coupled Flow Rules of Elastoplasticity for Rock-Like Materials
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
16
(
2
), pp.
77
92
.
You do not currently have access to this content.