Incremental sheet forming (ISF) is a flexible sheet metal forming process that enables forming of complex three-dimensional components by successive local deformations without using component-specific tooling. ISF is also regarded as a die-less manufacturing process in the absence of part-specific die. Geometric accuracy of formed components is inferior to that of their conventional counterparts. In single-point incremental forming (SPIF), the simplest variant of ISF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISF, namely, double-sided incremental forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However, the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicate that the supporting tool loses contact with the sheet after forming certain depth. This work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflections due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap of deformation zone that occurs during forming (instead of using sine law). A number of examples are presented to show that the proposed methodology works for a variety of geometries (axisymmetric, varying wall angle, free-forms, features above and below initial sheet plane, and multiple features). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths using DSIF, and support tool maintains contact with sheet throughout the forming process.

References

References
1.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
A.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann. Manuf. Technol.
,
54
(
2
), pp.
88
114
.
2.
Cao
,
J.
,
Huang
,
Y.
,
Reddy
,
N.
,
Malhotra
,
R.
, and
Wang
,
Y.
,
2008
, “
Incremental Sheet Metal Forming: Advances and Challenges
,”
ICTP 2008 International Conference on Technology of Plasticity
, Gyeongju, Korea, pp.
751
752
.
3.
Emmens
,
W. C.
,
Sebastiani
,
G.
, and
Googaard
,
A. H.
,
2010
, “
The Technology of Incremental Sheet Forming—A Brief Review of the History
,”
J. Mater. Process. Technol.
,
210
(
8
), pp.
981
997
.
4.
Reddy
,
N. V.
,
Lingam
,
R.
, and
Cao
,
J.
,
2014
, “
Incremental Sheet Metal Forming Processes
,”
Handbook of Manufacturing Engineering and Technology
,
Springer
,
London
, pp.
411
452
.
5.
Ambrogio
,
G.
,
Costantino
,
I.
,
De Napoli
,
L.
,
Filice
,
L.
,
Fratini
,
L.
, and
Muzzupappa
,
M.
,
2004
, “
Influence of Some Relevant Process Parameters on the Dimensional Accuracy in Incremental Forming: A Numerical and Experimental Investigation
,”
J. Mater. Process. Technol.
,
153–154
, pp.
501
507
.
6.
Ambrogio
,
G.
,
Cozza
,
V.
,
Filice
,
L.
, and
Micari
,
F.
,
2007
, “
An Analytical Model for Improving Precision in Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
191
(1–3), pp.
92
95
.
7.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2007
, “
Laser Assisted Incremental Forming: Formability and Accuracy Improvement
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
273
276
.
8.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2008
, “
Improved SPIF Performance Through Dynamic Local Heating
,”
Int. J. Mach. Tools Manuf.
,
48
(
5
), pp.
543
549
.
9.
Allwood
,
J. M.
,
Music
,
O.
,
Raithathna
,
A.
, and
Duncan
,
S. R.
,
2009
, “
Closed-Loop Feedback Control of Product Properties in Flexible Metal Forming Processes With Mobile Tools
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
287
290
.
10.
Asghar
,
J.
,
Lingam
,
R.
,
Shibin
,
E.
, and
Reddy
,
N. V.
,
2014
, “
Tool Path Design for Enhancement of Accuracy in Singlepoint Incremental Forming
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
9
), pp.
1027
1035
.
11.
Lingam
,
R.
,
Bansal
,
A.
, and
Reddy
,
N. V.
,
2015
, “
Analytical Prediction of Formed Geometry in Multi-Stage Single Point Incremental Forming
,”
Int. J. Mater. Form.
, (Online).
12.
Meier
,
H.
,
Buff
,
B.
,
Laurischkat
,
R.
, and
Smukala
,
V.
,
2009
, “
Increasing the Part Accuracy in Dieless Robot-Based Incremental Sheet Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
233
238
.
13.
Malhotra
,
R.
,
Cao
,
J.
,
Ren
,
F.
,
Kiridena
,
V.
,
Cedric Xia
,
Z.
, and
Reddy
,
N.
,
2011
, “
Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061019
.
14.
Malhotra
,
R.
,
Cao
,
J.
,
Beltran
,
M.
,
Xu
,
D.
,
Magargee
,
J.
,
Kiridena
,
V.
, and
Xia
,
Z.
,
2012
, “
Accumulative-DSIF Strategy for Enhancing Process Capabilities in Incremental Forming
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
251
254
.
15.
Skjødt
,
M.
,
Bay
,
N.
,
Endelt
,
B.
, and
Ingarao
,
G.
,
2008
, “
Multi Stage Strategies for Single Point Incremental Forming of a Cup
,”
Int. J. Mater. Form.
,
1
(
Suppl. 1
), pp.
1199
1202
.
16.
Malhotra
,
R.
,
Bhattacharya
,
A.
,
Kumar
,
A.
,
Reddy
,
N. V.
, and
Cao
,
J.
,
2011
, “
A New Methodology for Multi-Pass Single Point Incremental Forming With Mixed Toolpaths
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
323
326
.
17.
Xu
,
R.
,
Ren
,
H.
,
Zhang
,
Z.
,
Malhotra
,
R.
, and
Cao
,
J.
,
2014
, “
A Mixed Toolpath Strategy for Improved Geometric Accuracy and Higher Throughput in Double-Sided Incremental Forming
,”
ASME
Paper No. MSEC2014-4127.
18.
Zhang
,
Z.
,
Ren
,
H.
,
Xu
,
R.
,
Moser
,
N.
,
Smith
,
J.
,
Ndip-Agbro
,
E.
,
Malhotra
,
R.
,
Xia
,
Z. C.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2015
, “
A Mixed Double-Sided Incremental Forming Toolpath Strategy for Improved Geometric Accuracy
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051007
.
19.
Ren
,
H.
,
Moser
,
N.
,
Zhang
,
Z.
,
Ndip-Agbro
,
E.
,
Smith
,
J.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2015
, “
Effects of Tool Positions in Accumulated Double-Sided Incremental Forming on Part Geometry
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051008
.
20.
Moser
,
N.
,
Pritchet
,
D.
,
Ren
,
H.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2016
, “
An Efficient and General Finite Element Model for Double-Sided Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
091007
.
21.
Bhattacharya
,
A.
,
Maneesh
,
K.
,
Reddy
,
N.
, and
Cao
,
J.
,
2011
, “
Formability and Surface Finish Studies in Single Point Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061020
.
22.
Silva
,
M. B.
,
Skjoedt
,
M.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2008
, “
Revisiting the Fundamentals of Single Point Incremental Forming by Means of Membrane Analysis
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
73
83
.
23.
Aerens
,
R.
,
Eyckens
,
P.
,
Van Vael
,
A.
, and
Duflou
,
J. R.
,
2010
, “
Force Prediction for Single Point Incremental Forming Deduced From Experimental and FEM Observations
,”
Int. J. Adv. Manuf. Technol.
,
46
(
9
), pp.
969
982
.
24.
Timoshenko
,
S.
,
1940
,
Strength of Materials—Part II Advanced Theory and Problems
,
2nd ed.
,
D. Van Nostrand Company
,
New York
, pp.
149
150
.
25.
Lingam
,
R.
,
Om
,
P.
,
Belk
,
J. H.
, and
Reddy
,
N. V.
,
2016
, “
Automatic Feature Recognition and Tool Path Strategies for Enhancing Accuracy in Double Sided Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
(Online).
26.
Asgar
,
J.
,
Lingam
,
R.
, and
Reddy
,
V. N.
,
2014
, “
Tool Path Influence on Electric Pulse Aided Deformation During Incremental Sheet Metal Forming
,”
NUMISHEET 2014
:
The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
, Melbourne, Australia, Jan. 6–10, pp.
840
843
.
You do not currently have access to this content.