The continuous trend toward miniaturization of metallic microparts of high quality at low costs results in the need of appropriate production methods. Mechanical manufacturing processes like forming and blanking meet these demands. One major challenge for the application of them are the so-called size effects. Especially, the downsizing of the required manufacturing tools and adequate positioning cause higher effort with increasing miniaturization. One promising approach for downsizing of tools is the transfer of knowledge from microsystems technology. This study shows the process behavior of etched silicon punches in microblanking operations. For the application as tool material especially, the brittle material behavior and sensitivity against tensile stresses have to be considered. These mechanical loads favor wear in form of cracks and breaks at the cutting edge of the punch and thus decreasing tool life. In a special test rig these wear phenomena were observed in microblanking of copper foils. Although, high positioning accuracy between tools and workpiece can be assured within this test rig, scatter of tool life is observable. Therefore, a finite element (FE) analysis of the tool load in the microblanking process with special respect to tensile stresses was performed. Within the 3D FE model multidimensional positioning errors like tilting between punch and die were integrated. Their influence on the tool load in form of increasing tensile stresses is evaluated with respect to the type and magnitude of positioning error and verified by experimental results concerning wear. Furthermore, the effect of small outbreaks at the cutting edge on the process behavior and tool load is analyzed.

References

References
1.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann.-Manuf. Technol.
,
50
(
2
), pp.
445
462
.
2.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
.
3.
Shimizu
,
T.
,
Murashige
,
Y.
,
Ito
,
K.
, and
Manabe
,
K.
,
2009
, “
Influence of Surface Topographical Interaction Between Tool and Material in Micro-Deep Drawing
,”
J. Solid Mech. Mater. Eng.
,
3
(
2
), pp.
397
408
.
4.
Onikura
,
H.
,
Ohnishi
,
O.
, and
Take
,
Y.
,
2000
, “
Fabrication of Micro Carbide Tools by Ultrasonic Vibration Grinding
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
257
260
.
5.
Uhlmann
,
E.
,
Piltz
,
S.
, and
Doll
,
U.
,
2005
, “
Machining of Micro/Miniature Dies and Moulds by Electrical Discharge Machining—Recent Development
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
488
493
.
6.
Ghoshal
,
B.
, and
Bhattacharyya
,
B.
,
2013
, “
Influence of Vibration on Micro-Tool Fabrication by Electrochemical Machining
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
49
59
.
7.
Seidel
,
H.
,
Csepregi
,
L.
,
Heuberger
,
A.
, and
Baumgärtel
,
A.
,
1990
, “
Anisotropic Etching of Crystalline Silicon in Alkaline Solutions
,”
J. Electrochem. Soc.
,
137
(
11
), pp.
3612
3625
.
8.
Böhm
,
J.
,
Schubert
,
A.
,
Otto
,
T.
, and
Burkhardt
,
T.
,
2001
, “
Micro-Metalforming With Silicon Dies
,”
Microsyst. Technol.
,
7
(
4
), pp.
191
195
.
9.
Damsgaard
,
C. D.
,
Mortensen
,
D.
,
Rombach
,
P.
, and
Hansen
,
O.
,
2011
, “
Microcutting and Forming of Thin Aluminium Foils for MEMS
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061015
.
10.
Hildering
,
S.
,
Engel
,
U.
, and
Merklein
,
M.
,
2011
, “
Use of Monocrystalline Silicon as Tool Material for Highly Accurate Blanking of Thin Metal Foils
,”
AIP Conf. Proc.
,
1353
, pp.
481
486
.
11.
Kibe
,
Y.
,
Okada
,
Y.
, and
Mitsui
,
K.
,
2007
, “
Machining Accuracy for Shearing Process of Thin-Sheet Metals—Development of Initial Tool Position Adjustment System
,”
Int. J. Mach. Tools Manuf.
,
47
(
11
), pp.
1728
1737
.
12.
Joo
,
B. Y.
,
Rhim
,
S. H.
, and
Oh
,
S. I.
,
2005
, “
Micro-Hole Fabrication by Mechanical Punching Processes
,”
J. Mater. Process. Technol.
,
170
(
3
), pp.
593
601
.
13.
Flosky
,
H.
, and
Vollertsen
,
F.
,
2014
, “
Wear Behaviour in a Combined Micro Blanking and Deep Drawing Process
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
281
284
.
14.
Flosky
,
H.
,
Krüger
,
M.
, and
Vollertsen
,
F.
,
2014
, “
Temperature Measurement With Thermocouples During Micro Deep Drawing Process
,”
4th International Conference on Nanomanufacturing—nanoMan 2014
, Bremen, Germany, July 7–11, Paper No. C1-3.
15.
Hildering
,
S.
,
Engel
,
U.
, and
Merklein
,
M.
,
2015
, “
Influence of Process Errors on the Tool Load in Microblanking of Thin Metal Foils With Silicon Punches
,”
ASME J. Micro Nano Manuf.
,
3
(
2
), p.
021001
.
16.
Becsi
,
L.
,
Hildering
,
S.
,
Mescheder
,
U.
, and
Engel
,
U.
,
2011
, “
Micropunching—Use of Monocrystalline Silicon as Tool Material for Punching of Thin Foils
,” 4th Mikrosystemtechnik-Kongress, Darmstadt, Germany, Oct. 10–12, pp.
531
534
.
17.
Hildering
,
S.
, and
Engel
,
U.
,
2010
, “
A Novel Approach for High-Precision Blanking of Thin Metal Foils Using Monocrystalline Silicon as Tool Material
,”
7th International Conference on Multi-Material Micro Manufacture, Bourg en Bresse and Oyonnax
, France, Nov. 17–19, pp.
216
219
.
18.
Cheung
,
C. F.
,
Lee
,
W. B.
, and
Chiu
,
W. M.
,
2000
, “
An Investigation of Tool Wear in the Dam-Bar Cutting of Integrated Circuit Packages
,”
Wear
,
237
(
2
), pp.
274
282
.
19.
Diehl
,
A.
,
2010
, “
Größeneffekte bei Biegeprozessen—Entwicklung einer Methodik zur Identifikation und Quantifizierung
,” Ph.D. thesis, Meisenbach, Erlangen/Bamberg, Germany.
20.
Nerlove
,
M.
,
2005
, “
On the Numerical Accuracy of Mathematica 5.0 for Doing Linear and Nonlinear Regression
,”
Math. J.
,
9
(
4
), pp.
824
851
.
21.
Mescheder
,
U.
,
2004
,
Mikrosystemtechnik, Konzepte und Anwendungen
,
2nd ed.
,
Teubner
,
Stuttgart, Germany
.
22.
Werner
,
O.
,
Böhm
,
W.
,
Schikorr
,
G.
,
Schulze
,
B.
,
Jolitz
,
B.
,
Schikorr
,
I.
,
Deiß
,
E.
,
Albers
,
K.
,
Link
,
E.
,
Jacobi
,
O.
,
Ludwig
,
N.
, and
Boxhammer
,
K.
,
1944
,
Metalle und Metallkonstruktionen
,
1st ed.
,
Springer
,
Wien, Austria
.
23.
Lemaître
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
You do not currently have access to this content.