Fluid deformations around a cylinder combined with an applied electric field are used to enhance the kinetics rate and the response time of heterogeneous immunosensors in microfluidic systems. The insertion of an obstacle in the microchannel as well as the application an applied electric field are used to change the fluid motion topology that improves the transport of diffusion-limited proteins. The response time is affected by various parameters such as the inlet flow velocity, the initial analyte concentration and the obstacle position. The effects of the parameters related to the kinetics reaction on the sensitivity and the performance of the biosensor have been studied numerically. Numerical results reveal that an appropriate choice of the inlet analyte and inlet flow velocity with applied electric field may reduce considerably the response time and enhance the microfluidic sensor performance.

References

References
1.
Manz
,
A.
,
Graber
,
N.
, and
Widmer
,
H. M.
,
1990
, “
Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing
,”
Sens. Actuators, B
,
1
(1–6), pp.
244
248
.
2.
Burns
,
M. A.
,
Johnson
,
B. N.
,
Brahmasandra
,
S. N.
,
Handique
,
K.
,
Webster
,
J. R.
,
Krishnan
,
M.
,
Sammarco
,
T. S.
,
Man
,
P. M.
,
Jones
,
D.
,
Heldsinger
,
D.
,
Mastrangelo
,
C. H.
, and
Burke
,
D. T.
,
1998
, “
An Integrated Nanoliter DNA Analysis Device
,”
Science
,
282
(
5388
), pp.
484
487
.
3.
Oki
,
A.
,
Adachi
,
S.
,
Takamura
,
Y.
,
Ishikawa
,
K.
,
Ogawa
,
H.
,
Ito
,
Y.
,
Ichiki
,
T.
, and
Horiike
,
Y.
,
2001
, “
Electroosmosis Injection of Blood Serum Into Biocom-Patiblemicrocapillary Chip Fabricated on Quartz Plate
,”
Electroosmosis
,
22
, pp.
341
347
.
4.
Qudus
,
H.
,
Chengyang
,
W.
,
Yu
,
Z.
,
Jessica
,
S.
, and
Wei
,
S.
,
2014
, “
Fabrication of Biological Microfluidics Using a Digital Microfabrication System
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061001
.
5.
Yenny
,
R.
,
Russell
,
M.
, and
Shanon
,
R.
,
2015
, “
Limitations of Additive Manufacturing on Microfluidic Heat Exchanger Components
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034504
.
6.
Cao
,
L.
,
Mantell
,
S.
, and
Polla
,
D.
,
2001
, “
Design and Simulation of an Implantable Medi-Cal Drug Delivery System Using Microelectromechanical Systems Technology
,”
Sens. Actuators, A
,
94
(1–2), pp.
117
125
.
7.
Kuntaegowdanahalli
,
S. S.
,
Bhagat
,
A. A. S.
,
Kumar
,
G.
, and
Papautsky
,
I.
,
2009
, “
Inertial Microfluidics for Continuous Particle Separation in Spiral Microchannels
,”
Lab Chip
,
9
(
20
), pp.
2973
2980
.
8.
Prahalad
,
K. R.
,
Jia (Peter)
,
L.
,
David
,
R.
,
Zhenyu (James)
,
K.
, and
Christopher
,
W.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
9.
Ehrnstrom
,
R.
,
2002
, “
Miniaturization and Integration: Challenges and Breakthroughs in Microfluidics
,”
Lab Chip
,
2
(
2
), pp.
26N
30N
.
10.
Lee
,
K.-H.
,
Su
,
Y.-D.
,
Chen
,
S.-J.
,
Tseng
,
F.-G.
, and
Lee
,
G.-B.
,
2007
, “
Microfluidic Systems Integrated With Two-Dimensional Surface Plasmon Resonance Phase Imaging Systems for Microarray Immunoassay
,”
Biosens. Bioelectron.
,
23
(
4
), pp.
466
472
.
11.
Kanda
,
V.
,
Kariuki
,
J. K.
,
Harrison
,
D. J.
, and
McDermott
,
M. T.
,
2004
, “
Label-Free Reading of Microarray-Based Immunoassays With Surface Plasmon Resonance Imaging
,”
Anal. Chem.
,
76
(
24
), pp.
7257
7262
.
12.
Pascal-Delannoy
,
F.
,
Sorli
,
B.
, and
Boyer
,
A.
,
2000
, “
Quartz Crystal Microbalance QCM Used as Humidity Sensor
,”
Sens. Actuators, A
,
84
(3), pp.
285
291
.
13.
Zhou
,
X. C.
,
Huang
,
L. Q.
, and
Li
,
S. F. Y.
,
2001
, “
Microgravimetric DNA Sensor Based on Quartz Crystal Microbalance: Comparison of Oligonucleotide Immobilization Methods and the Application in Genetic Diagnosis
,”
Biosens. Bioelectron.
,
16
(1–2), pp.
85
95
.
14.
Barhoumi
,
H.
,
Maaref
,
A.
,
Rammah
,
M.
,
Martelet
,
C.
,
Jaffrezic
,
N.
,
Mousty
,
C.
,
Vial
,
S.
, and
Forano
,
C.
,
2006
, “
Urea Biosensor Based on Zn3Al-Urease Layered Double Hydroxides Nanohybrid Coated on Insulated Silicon Structures
,”
Mater. Sci. Eng. C
,
26
(2–3), pp.
328
333
.
15.
Hibbert
,
D. B.
,
Gooding
,
J. J.
, and
Erokhin
,
P.
,
2002
, “
Kinetics of Irreversible Adsorption With Diffusion: Application to Biomolecule Immobilization
,”
Langmuir
,
18
(
5
), pp.
1770
1776
.
16.
Chaiken
,
I.
,
Rosé
,
S.
, and
Karlsson
,
R.
,
1992
, “
Analysis of Macromolecular Interactions Using Immobilized Ligands
,”
Anal. Biochem.
,
201
(
2
), pp.
197
210
.
17.
Sigurdson
,
M.
,
Wang
,
D.
, and
Meinhart
,
C. D.
,
2005
, “
Electrothermal Stirring for Heterogeneous Immunoassays
,”
Lab Chip
,
5
(
12
), pp.
1366
1373
.
18.
Feldman
,
H. C.
,
Sigurdson
,
M.
, and
Meinhart
,
C. D.
,
2007
, “
AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics
,”
Lab Chip
,
7
(
11
), pp.
1553
1559
.
19.
Huang
,
K.-R.
,
Chang
,
J.-S.
,
Chao
,
S. D.
,
Wu
,
K.-C.
,
Yang
,
C.-K.
,
Lai
,
C.-Y.
, and
Chen
,
S.-H.
,
2008
, “
Simulation on Binding Efficiency of Immunoassay for a Biosensor With Applying Electrothermal Effect
,”
J. Appl. Phys.
,
104
(
6
), p.
064702
.
20.
Hlushkou
,
D.
,
Perdue
,
R. K.
,
Dhopeshwarkar
,
R.
,
Crooks
,
R. M.
, and
Tallarek
,
U.
,
2009
, “
Electric Field Gradient Focusing in Microchannels With Embedded Bipolar Electrode
,”
Lab Chip
,
9
(
13
), pp.
1903
1913
.
21.
Hart
,
R.
,
Lec
,
R.
, and
Noh
,
H.
,
2010
, “
Enhancement of Heterogeneous Immunoassays Using AC Electroosmosis
,”
Sens. Actuators, B
,
147
(
1
), pp.
366
375
.
22.
Liu
,
X.
,
Yang
,
K.
,
Wadhwa
,
A.
,
Eda
,
S.
,
Li
,
S.
, and
Wu
,
J.
,
2011
, “
Development of an AC Electrokinetics-Based Immunoassay System for On-Site Serodiagnosis of Infectious Diseases
,”
Sens. Actuators, A
,
171
(
2
), pp.
406
413
.
23.
Mahmoodi
,
S. R.
,
Bayati
,
M.
,
Hosseinirad
,
S.
,
Foroumadi
,
A.
,
Gilani
,
K.
, and
Rezayat
,
S. M.
, “
AC Electrokinetic Manipulation of Selenium Nanoparticles for Potential Nanosensor Applications
,”
Mater. Res. Bull.
,
48
(
3
), pp.
1262
1267
.
24.
Huang
,
K.-R.
, and
Chang
,
J.-S.
,
2013
, “
Three Dimensional Simulation on Binding Efficiency of Immunoassay for a Biosensor With Applying Electrothermal Effect
,”
Heat Mass Transfer
,
49
(
11
), pp.
1647
1658
.
25.
Yang
,
W.
, and
Woolley
,
A. T.
,
2010
, “
Integrated Multiprocess Microfluidic Systems for Automating Analysis
,”
J. Assoc. Lab. Autom.
,
15
(
3
), pp.
198
209
.
26.
Hrdlička
,
J.
,
Patel
,
N. S.
, and
Šnita
,
D.
,
2014
, “
Traveling Wave Electroosmosis: The Influence of Electrode Array Geometry
,”
Electrophoresis
,
35
, pp.
1790
1794
.
27.
Williams
,
S. J.
, and
Green
,
N. G.
,
2015
, “
Electrothermal Pumping With Interdigitated Electrodes and Resistive Heaters
,”
Electrophoresis
,
36
(
15
), pp.
1681
1689
.
28.
Ramos
,
A.
,
Morgan
,
H.
,
Green
,
N. G.
, and
Castellanos
,
A.
,
1998
, “
Ac Electrokinetics: A Review of Forces in Microelectrode Structures
,”
J. Phys. D: Appl. Phys.
,
31
(
18
), pp.
2338
2353
.
29.
Melvin
,
E. M.
,
Moore
,
B. R.
,
Gilchrist
,
K. H.
,
Grego
,
S.
, and
Velev
,
O. D.
,
2011
, “
On-Chip Collection of Particles and Cells by AC Electroosmotic Pumping and Dielectrophoresis Using Asymmetric Microelectrodes
,”
Biomicrofluidics
,
5
(
3
), pp.
034113
034117
.
30.
Huang
,
Y.-H.
,
Chang
,
J.-S.
,
Chao
,
S. D.
,
Wu
,
K.-C.
, and
Huang
,
L.-S.
,
2014
, “
Improving the Binding Efficiency of Quartz Crystal Microbalance Biosensors by Applying the Electrothermal Effect
,”
Biomicrofluidics
,
8
(
5
), p.
054116
.
31.
Chen
,
D. F.
, and
Du
,
H.
,
2006
, “
Simulation Studies on Electrothermal Fluid Flow Induced in a Dielectrophoretic Microelectrode System
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2411
2419
.
32.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2001
, “
Electrothermally Induced Fluid Flow on Microelectrodes
,”
J. Electrostat.
,
53
(
2
), pp.
71
87
.
33.
Castellanos
,
A.
,
1998
,
Electrohydrodynamics
,
Springer
,
New York
.
34.
Singiresu
,
S. R.
,
2004
,
The Finite Element Method in Engineering
, 4th ed.,
Elsevier Science and Technology Books
,
Miami, FL
.
35.
Pearson
,
J. R. A.
,
1959
, “
A Note on the ‘‘Danckwerts" Boundary Conditions for Continuous Flow Reactors
,”
Chem. Eng. Technol.
,
10
(4), pp.
281
284
.
36.
Hu
,
G.
,
Gao
,
Y.
, and
Li
,
D.
,
2007
, “
Modeling Micropatterned Antigen–Antibody Binding Kinetics in a Microfluidic Chip
,”
Biosens. Bioelectron.
,
22
(
7
), pp.
1403
1409
.
37.
Kim
,
D. R.
, and
Zheng
,
X.
,
2008
, “
Numerical Characterization and Optimization of the Microfluidics for Nanowire Biosensors
,”
Nano Lett.
,
8
(
10
), pp.
3233
3237
.
38.
Selmi
,
M.
,
Echouchene
,
F.
, and
Belmabrouk
,
H.
,
2015
, “
Analysis of Microfluidic Biosensor Efficiency Using a Cylindrical Obstacle
,”
Sens. Lett.
,
14
(1), pp.
26
31
.
39.
Hofmann
,
O.
,
Voirin
,
G.
,
Niedermann
,
P.
, and
Manz
,
A.
,
2002
, “
Three-Dimensional Microfluidic Confinement for Efficient Sample Delivery to Biosensor Surfaces. Application to Immunoassays on Planar Optical Waveguides
,”
Anal. Chem.
,
74
(
20
), pp.
5243
5250
.
40.
Yang
,
C.-K.
,
Chang
,
J.-S.
,
Chao
,
S. D.
, and
Wu
,
K.-C.
,
2008
, “
Effects of Diffusion Boundary Layer on Reaction Kinetics of Immunoassay in a Biosensor
,”
J. Appl. Phys.
,
103
(
8
), pp.
084702
084710
.
You do not currently have access to this content.