Flank milling is one of the most important technologies for machining of complex surfaces. A small change of the tool orientation in the part coordinate system (PCS) may produce a great rotation of the rotary axes of the machine tool. Therefore, this paper proposes a tool path optimization model for flank milling in the machine coordinate system (MCS). The tool path is computed to smooth the variation of the rotary axes while controlling the geometric deviation. The geometric deviation is measured by the signed distance between the design surface and the tool envelope surface in the PCS. The geometric accuracy is not an objective but a constraint in the proposed optimization model. Given a prescribed geometric tolerance, the tool path smoothness optimization model is reformulated as a constrained nonlinear programming problem. The ε constrained differential evolution with gradient-based mutation (εDEg) is adopted to solve this constrained problem. The validity of the proposed approach is confirmed by numerical examples.

References

References
1.
Liu
,
X. W.
,
1995
, “
Five-Axis NC Cylindrical Milling of Sculptured Surfaces
,”
Comput. Aided Des.
,
27
(
12
), pp.
887
894
.
2.
Redonnet
,
J.
,
Rubio
,
W.
, and
Dessein
,
G.
,
1998
, “
Side Milling of Ruled Surfaces: Optimum Positioning of the Milling Cutter and Calculation of Interference
,”
Int. J. Adv. Manuf. Technol.
,
14
(
7
), pp.
459
465
.
3.
Der Min
,
T.
, and
Her
,
M. J.
,
2001
, “
Accurate 5-Axis Machining of Twisted Ruled Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
731
738
.
4.
Gong
,
H.
, and
Wang
,
N.
,
2009
, “
Optimize Tool Paths of Flank Milling With Generic Cutters Based on Approximation Using the Tool Envelope Surface
,”
Comput. Aided Des.
,
41
(
12
), pp.
981
989
.
5.
Ding
,
H.
, and
Zhu
,
L. M.
,
2009
, “
Global Optimization of Tool Path for Five-Axis Flank Milling With a Cylindrical Cutter
,”
Sci. China Ser. E
,
52
(
8
), pp.
2449
2459
.
6.
Zhu
,
L.
,
Zheng
,
G.
,
Ding
,
H.
, and
Xiong
,
Y.
,
2010
, “
Global Optimization of Tool Path for Five-Axis Flank Milling With a Conical Cutter
,”
Comput. Aided Des.
,
42
(
10
), pp.
903
910
.
7.
Lartigue
,
C.
,
Duc
,
E.
, and
Affouard
,
A.
,
2003
, “
Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface
,”
Comput. Aided Des.
,
35
(
4
), pp.
375
382
.
8.
Chiou
,
J. C. J.
,
2004
, “
Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach
,”
Comput. Aided Des.
,
36
(
10
), pp.
967
974
.
9.
Gong
,
H.
,
Cao
,
L. X.
, and
Liu
,
J.
,
2005
, “
Improved Positioning of Cylindrical Cutter for Flank Milling Ruled Surfaces
,”
Comput. Aided Des.
,
37
(
12
), pp.
1205
1213
.
10.
Zhu
,
L. M.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2012
, “
Simultaneous Optimization of Tool Path and Shape for Five-Axis Flank Milling
,”
Comput. Aided Des.
,
44
(
12
), pp.
1229
1234
.
11.
Sun
,
Y. W.
, and
Guo
,
Q.
,
2012
, “
Analytical Modeling and Simulation of the Envelope Surface in Five-Axis Flank Milling With Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021010
.
12.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.
13.
Hsieh
,
H. T.
, and
Chu
,
C. H.
,
2011
, “
Particle Swarm Optimisation (PSO)-Based Tool Path Planning for 5-Axis Flank Milling Accelerated by Graphics Processing Unit (GPU)
,”
Int. J. Comput. Integr. Manuf.
,
24
(
7
), pp.
676
687
.
14.
Castagnetti
,
C.
,
Duc
,
E.
, and
Ray
,
P.
,
2008
, “
The Domain of Admissible Orientation Concept: A New Method for Five-Axis Tool Path Optimisation
,”
Comput. Aided Des.
,
40
(
9
), pp.
938
950
.
15.
Plakhotnik
,
D.
, and
Lauwers
,
B.
,
2014
, “
Graph-Based Optimization of Five-Axis Machine Tool Movements by Varying Tool Orientation
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
307
318
.
16.
Srijuntongsiri
,
G.
, and
Makhanov
,
S. S.
,
2015
, “
Optimisation of Five-Axis Machining G-Codes in the Angular Space
,”
Int. J. Prod. Res.
,
53
(
11
), pp.
3207
3227
.
17.
Pechard
,
P. Y.
,
Tournier
,
C.
,
Lartigue
,
C.
, and
Lugarini
,
J. P.
,
2009
, “
Geometrical Deviations Versus Smoothness in 5-Axis High-Speed Flank Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
454
461
.
18.
Zheng
,
G.
,
Bi
,
Q. Z.
, and
Zhu
,
L. M.
,
2012
, “
Smooth Tool Path Generation for Five-Axis Flank Milling Using Multi-Objective Programming
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
2
), pp.
247
254
.
19.
Chu
,
C. H.
,
Hsieh
,
H. T.
,
Lee
,
C. H.
, and
Yan
,
C. y.
,
2015
, “
Spline-Constrained Tool-Path Planning in Five-Axis Flank Machining of Ruled Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
80
(
9
), pp.
2097
2104
.
20.
Tulsyan
,
S.
, and
Altintas
,
Y.
,
2015
, “
Local Toolpath Smoothing for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
15
26
.
21.
Tournier
,
C.
,
Castagnetti
,
C.
,
Lavernhe
,
S.
, and
Avellan
,
F.
,
2006
, “
Tool Path Generation and Post-Processor Issues in Five-Axis High Speed Machining of Hydro Turbine Blades
,”
Fifth International Conference on High Speed Machining
,
Metz, France
.
22.
Beudaert
,
X.
,
Pechard
,
P. Y.
, and
Tournier
,
C.
,
2011
, “
5-Axis Tool Path Smoothing Based on Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
958
965
.
23.
Hsieh
,
H. T.
, and
Chu
,
C. H.
,
2013
, “
Improving Optimization of Tool Path Planning in 5-Axis Flank Milling Using Advanced PSO Algorithms
,”
Rob. Comput. Integr. Manuf.
,
29
(
3
), pp.
3
11
.
24.
Hsieh
,
H. T.
, and
Chu
,
C. H.
,
2012
, “
Optimization of Tool Path Planning in 5-Axis Flank Milling of Ruled Surfaces With Improved PSO
,”
Int. J. Precis. Eng. Manuf.
,
13
(
1
), pp.
77
84
.
25.
Chu
,
C. H.
, and
Hsieh
,
H. T.
,
2012
, “
Generation of Reciprocating Tool Motion in 5-Axis Flank Milling Based on Particle Swarm Optimization
,”
J. Intell. Manuf.
,
23
(
5
), pp.
1501
1509
.
26.
Hsieh
,
H. T.
,
Tsai
,
Y. C.
, and
Chu
,
C. H.
,
2013
, “
Multi-Pass Progressive Tool Path Planning in Five-Axis Flank Milling by Particle Swarm Optimisation
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
977
987
.
27.
Kuo
,
C. L.
,
Chu
,
C. H.
,
Li
,
Y.
,
Li
,
X. y.
, and
Gao
,
L.
,
2015
, “
Electromagnetism-Like Algorithms for Optimized Tool Path Planning in 5-Axis Flank Machining
,”
Comput. Ind. Eng.
,
84
, pp.
70
78
.
28.
Takahama
,
T.
, and
Sakai
,
S.
,
2010
, “
Constrained Optimization by the ε Constrained Differential Evolution With an Archive and Gradient-Based Mutation
,”
IEEE Congress on Evolutionary Computation
, pp.
1
9
.
29.
Takahama
,
T.
, and
Sakai
,
S.
,
2006
, “
Constrained Optimization by the ε Constrained Differential Evolution With Gradient-Based Mutation and Feasible Elites
,”
IEEE Congress on Evolutionary Computation
, pp.
1
8
.
30.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
31.
Ferry
,
W.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part II: Feed Rate Optimization of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011013
.
32.
Ferry
,
W.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011005
.
33.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051005
.
34.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Operations—Part I: Process Simulation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051004
.
35.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
044501
.
36.
Karandikar
,
J.
,
Traverso
,
M.
,
Abbas
,
A.
, and
Schmitz
,
T.
,
2014
, “
Bayesian Inference for Milling Stability Using a Random Walk Approach
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031015
.
37.
dos Santos
,
R. G.
, and
Coelho
,
R. T.
,
2014
, “
A Contribution to Improve the Accuracy of Chatter Prediction in Machine Tools Using the Stability Lobe Diagram
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021005
.
38.
Zheng
,
C.
,
Wang
,
J.-J. J.
, and
Sung
,
C.
,
2014
, “
Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011003
.
39.
Ding
,
Y.
,
Zhang
,
X.
, and
Ding
,
H.
,
2015
, “
Harmonic Differential Quadrature Method for Surface Location Error Prediction and Machining Parameter Optimization in Milling
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
024501
.
40.
Zhu
,
L. M.
,
Zhang
,
X. M.
,
Zheng
,
G.
, and
Ding
,
H.
,
2009
, “
Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041017
.
41.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
42.
Langeron
,
J. M.
,
Duc
,
E.
,
Lartigue
,
C.
, and
Bourdet
,
P.
,
2004
, “
A New Format for 5-Axis Tool Path Computation, Using Bspline Curves
,”
Comput. Aided Des.
,
36
(
12
), pp.
1219
1229
.
43.
Anotaipaiboon
,
W.
, and
Makhanov
,
S. S.
,
2011
, “
Minimization of the Kinematics Error for Five-Axis Machining
,”
Comput. Aided Des.
,
43
(
12
), pp.
1740
1757
.
44.
Chen
,
H. P.
,
Kuo
,
H. H.
, and
Tsay
,
D. M.
,
2009
, “
Removing Tool Marks of Blade Surfaces by Smoothing Five-Axis Point Milling Cutter Paths
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5810
5817
.
45.
Qin
,
J.-Y.
,
Jia
,
Z.-Y.
,
Ma
,
J.-W.
,
Ren
,
Z.-J.
, and
Song
,
D.-N.
, “
An Efficient 5-Axis Toolpath Optimization Algorithm for Machining Parts With Abrupt Curvature
,”
Proc. Inst. Mech. Eng., Part C
(online).
You do not currently have access to this content.