Selective laser melting (SLM) additive manufacturing (AM) of hard-to-process W-based parts with the addition of 2.5 wt.% TiC was performed using a new metallurgical processing mechanism with the complete melting of the high-melting-point powder. The influence of SLM processing parameters, especially laser scan speed and attendant laser fluence (LF), on densification behavior, microstructural development, and hardness/wear performance of SLM-processed W-based alloy parts was disclosed. The densification response of SLM-processed W-based parts decreased both at a low LF of 10.7 J/mm2, caused by the limited SLM working temperature and wetting characteristics of the melt, and at an excessively high LF of 64 J/mm2, caused by the significant melt instability and resultant balling effect and microcracks formation. The laser-induced complete melting/solidification mechanism contributed to the solid solution alloying of Ti and C in W matrix and the development of unique microstructures of SLM-processed W-based alloy parts. As the applied LF increased by lowering laser scan speed, the morphologies of W-based crystals in SLM-processed alloy parts experienced a successive change from the cellular crystal to the cellular dendritic crystal and, finally, to the equiaxed dendritic crystal, due to an elevated constitutional undercooling and a decreased thermal undercooling. The optimally prepared W-based alloy parts by SLM had a nearly full densification rate of 97.8% theoretical density (TD), a considerably high microhardness of 809.9 HV0.3, and a superior wear/tribological performance with a decreased coefficient of friction (COF) of 0.41 and a low wear rate of 5.73 × 10−7 m3/(N m), due to the combined effects of the sufficiently high densification and novel crystal microstructures of SLM-processed W-based alloy parts.

References

References
1.
Jahan
,
M. P.
,
Saleh
,
T.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2010
, “
Development, Modeling, and Experimental Investigation of Low Frequency Workpiece Vibration-Assisted Micro-EDM of Tungsten Carbide
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
054503
.
2.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile–Brittle Transition in Milling Process of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051012
.
3.
Alemohammad
,
H.
, and
Toyserkani
,
E.
,
2011
, “
Metal Embedded Optical Fiber Sensors: Laser-Based Layered Manufacturing Procedures
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031015
.
4.
Smid
,
I.
,
Akiba
,
M.
,
Vieider
,
G.
, and
Plöchl
,
L.
,
1998
, “
Development of Tungsten Armor and Bonding to Copper for Plasma-Interactive Components
,”
J. Nucl. Mater.
,
258–263
, pp.
160
172
.
5.
Zhang
,
G. Q.
, and
Gu
,
D. D.
,
2013
, “
Synthesis of Nanocrystalline TiC Reinforced W Nanocomposites by High-Energy Mechanical Alloying: Microstructural Evolution and Its Mechanism
,”
Appl. Surf. Sci.
,
273
, pp.
364
371
.
6.
Qiao
,
Z. H.
,
Wang
,
H. J.
,
Ma
,
X. F.
,
Zhao
,
W.
, and
Tang
,
H. G.
,
2008
, “
Nanostructured Bulk Novel Hard Material With “Rounded” Grains Obtained by Nanocrystalline “Rounded” (W0.5Al0.5)C Powders
,”
Mater. Sci. Eng. A
,
496
, pp.
507
511
.
7.
Qiao
,
Z. H.
,
Ma
,
X. F.
,
Zhao
,
W.
, and
Tang
,
H. G.
,
2008
, “
Fabrication, Thermal Stability and Mechanical Properties of Novel Composite Hardmetals Obtained by Solid-State Reaction and Hot-Pressing Sintering
,”
Mater. Chem. Phys.
,
108
, pp.
364
368
.
8.
Wu
,
J. G.
,
Zhou
,
S. Y.
, and
Li
,
X. C.
,
2015
, “
Ultrasonic Attenuation Based Inspection Method for Scale-Up Production of A206–Al2O3 Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011013
.
9.
Ye
,
C.
, and
Cheng
,
G. J.
,
2010
, “
Laser Shock Peening of Nanoparticles Integrated Alloys: Numerical Simulation and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061017
.
10.
Gu
,
D. D.
,
Wang
,
H. Q.
,
Dai
,
D. H.
,
Yuan
,
P. P.
,
Meiners
,
W.
, and
Poprawe
,
R.
,
2015
, “
Rapid Fabrication of Al-Based Bulk-Form Nanocomposites With Novel Reinforcement and Enhanced Performance by Selective Laser Melting
,”
Scr. Mater.
,
96
, pp.
25
28
.
11.
Attar
,
H.
,
Bonisch
,
M.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Selective Laser Melting of In Situ Titanium–Titanium Boride Composites: Processing, Microstructure and Mechanical Properties
,”
Acta Mater.
,
76
, pp.
13
22
.
12.
Rodriguez-Suarez
,
T.
,
Díaz
,
L. A.
,
Torrecillas
,
R.
,
Lopez-Esteban
,
S.
,
Tuan
,
W. H.
,
Nygren
,
M.
, and
Moya
,
J. S.
,
2009
, “
Alumina/Tungsten Nanocomposites Obtained by Spark Plasma Sintering
,”
Compos. Sci. Technol.
,
69
(
14
), pp.
2467
2473
.
13.
Arshad
,
K.
,
Wang
,
J.
,
Yuan
,
Y.
,
Zhang
,
Y.
,
Zhou
,
Z. J.
, and
Lu
,
G. H.
,
2015
, “
Development of Tungsten-Based Materials by Different Sintering Techniques
,”
Int. J. Refract. Met. Hard Mater.
,
50
, pp.
253
257
.
14.
Park
,
J. W.
,
Suh
,
J. Y.
,
Kang
,
S. W.
,
Shin
,
S. E.
, and
Bae
,
D. H.
,
2014
, “
The Effect of the Size and Volume Fraction of Zr2Cu on the Sintering Behavior of Tungsten Matrix Composites During Liquid-Reactive Sintering
,”
Int. J. Refract. Met. Hard Mater.
,
43
, pp.
157
163
.
15.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
16.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.
17.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
18.
Gu
,
D. D.
,
2015
,
Laser Additive Manufacturing of High-Performance Materials
,
Springer-Verlag
,
Berlin
.
19.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
20.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.
21.
Kempen
,
K.
,
Vrancken
,
B.
,
Buls
,
S.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2014
, “
Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061026
.
22.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
23.
Das
,
M.
,
Balla
,
V. K.
,
Basu
,
D.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2010
, “
Laser Processing of SiC-Particle-Reinforced Coating on Titanium
,”
Scr. Mater.
,
63
(
4
), pp.
438
441
.
24.
Zhou
,
X.
,
Liu
,
X. H.
,
Zhang
,
D. D.
,
Shen
,
Z. J.
, and
Liu
,
W.
,
2015
, “
Balling Phenomena in Selective Laser Melted Tungsten
,”
J. Mater. Process Technol.
,
222
, pp.
33
42
.
25.
Gu
,
D. D.
, and
Shen
,
Y. F.
,
2009
, “
Effects of Processing Parameters on Consolidation and Microstructure of W–Cu Components by DMLS
,”
J. Alloys Compd.
473
, pp.
107
115
.
26.
Gu
,
D. D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G. B.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
27.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
28.
Goldschmidt
,
H. J.
, and
Brand
,
J. A.
,
1963
, “
The Tungsten-Rich Region of the System Tungsten–Carbon
,”
J. Less Common Met.
,
5
(
2
), pp.
181
194
.
29.
Pan
,
J. S.
,
1998
,
Materials Science Fundamentals
,
1st ed.
,
Tsinghua University Press
,
Beijing, China
.
30.
Takamichi
,
I.
, and
Roderick
,
I. L. G.
,
1993
,
The Physical Properties of Liquid Metals
,
Clarendon Press
,
Oxford, UK
.
31.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
.
32.
Simchi
,
A.
,
2006
, “
Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
148
158
.
33.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadroitsev
,
I. A.
,
Laoui
,
T.
,
Froyen
,
L.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
,
2004
, “
Balling Processes During Selective Laser Treatment of Powders
,”
Rapid Prototyping J.
,
10
(
2
), pp.
78
87
.
34.
Dai
,
K.
, and
Shaw
,
L.
,
2005
, “
Finite Element Analysis of the Effect of Volume Shrinkage During Laser Densification
,”
Acta Mater.
,
53
(
18
), pp.
4743
4754
.
35.
Dai
,
K.
, and
Shaw
,
L.
,
2001
, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
,
49
(
20
), pp.
4171
4181
.
36.
Xiao
,
B.
, and
Zhang
,
Y. W.
,
2007
, “
Analysis of Melting of Alloy Powder Bed With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2161
2169
.
37.
Zhu
,
H. H.
,
Lu
,
L.
, and
Fuh
,
J. Y. H.
,
2006
, “
Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
2
), pp.
183
190
.
38.
Zhong
,
M. L.
,
Sun
,
H. Q.
,
Liu
,
W. J.
,
Zhu
,
X. F.
, and
He
,
J. J.
,
2005
, “
Boundary Liquation and Interface Cracking Characterization in Laser Deposition of Inconel 738 on Directionally Solidified Ni-Based Superalloy
,”
Scr. Mater.
,
53
(
2
), pp.
159
164
.
39.
Yang
,
S.
,
Huang
,
W. D.
,
Liu
,
W. J.
,
Zhong
,
M. L.
, and
Zhou
,
Y. H.
,
2002
, “
Development of Microstructures in Laser Surface Remelting of DD2 Single Crystal
,”
Acta Mater.
,
50
(
2
), pp.
315
325
.
40.
Schwarz
,
M.
,
Arnold
,
C. B.
,
Aziz
,
M. J.
, and
Herlach
,
D. M.
,
1997
, “
Dendritic Growth Velocity and Diffusive Speed in Solidification Undercooled Dilute Ni–Zr Melts
,”
Mater. Sci. Eng. A
,
226–228
, pp.
420
424
.
41.
Gu
,
D. D.
,
Chang
,
F.
, and
Dai
,
D. H.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
42.
Jain
,
A.
,
Basu
,
B.
,
Kumar
,
B. V. M.
,
Harshavardhan
, and
Sarkar
,
J.
,
2010
, “
Grain Size–Wear Rate Relationship for Titanium in Liquid Nitrogen Environment
,”
Acta Mater.
,
58
(
7
), pp.
2313
2323
.
You do not currently have access to this content.