Hard turning is becoming increasingly considered by industry as a potential substitute for grinding. However, it is greatly hurdled by surface integrity problems such as tensile residual stress and white layer, which are generally found to have negative effects on the stress corrosion, wear resistance, and fatigue life of the machined parts. This paper investigates white layer formation and morphology in hard turning process using various process parameters, taking into account the effects of heat treatment which results in microstructure and hardness differences on bulk materials. Samples undergone three typical heat treatment processes are prepared and then machined using different cutting speeds and radial feed rates. Optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after varies heat treatments and cutting processes. Through the studies, we find the existence of a cutting speed threshold, below which no white layer forms for both the low and medium-temperature tempering. The threshold value increases; however, the white layer thickness decreases under the same cutting conditions, for the low and medium-temperature tempering, respectively. Also, we find that the white layer thickness and the scattering of it along the cutting direction on the surface increases with cutting speed and radial feed rate. White layer with wavy morphology can be found in samples after quenching at high cutting speed. We first discover that the pitch of the white layer with wavy morphology is similar to the displacement of tool at the time a segment of the serrated chips forms. Also, the surface residual stresses of the samples are measured. Relationship between white layer and residual stresses is presented. Based on the relationship we reveal that high temperature is more dominant than volume expansion for white layer formation.

References

References
1.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
Chip Formation, Acoustic Emission and Surface White Layers in Hard Machining
,”
CIRP Ann.-Manuf. Technol.
,
51
(
1
), pp.
65
70
.
2.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1999
, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1863
1881
.
3.
Hosseini
,
S. B.
,
Klement
,
U.
,
Yao
,
Y.
, and
Ryttberg
,
K.
,
2015
, “
Formation Mechanisms of White Layers Induced by Hard Turning of AISI 52100 Steel
,”
Acta Mater.
,
89
, pp.
258
267
.
4.
Grzesik
,
W.
, and
Zak
,
K.
,
2014
, “
Characterization of Surface Integrity Produced by Sequential Dry Hard Turning and Ball Burnishing Operations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031017
.
5.
Ali
,
M. Y.
, and
Pan
,
J.
,
2015
, “
Residual Stresses Due to Rigid Cylinder Indentation and Rolling at a Very High Rolling Load
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051005
.
6.
Farrokhi
,
F.
,
Siltanen
,
J.
, and
Salminen
,
A.
,
2015
, “
Fiber Laser Welding of Direct-Quenched Ultrahigh Strength Steels: Evaluation of Hardness, Tensile Strength, and Toughness Properties at Subzero Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061012
.
7.
Tang
,
B.
,
Tang
,
B. T.
,
Wang
,
Q. L.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P. F.
,
2014
, “
Influence of Temperature and Deformation on Phase Transformation and Vickers Hardness in Tailored Tempering Process: Numerical and Experimental Verifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051018
.
8.
Aramcharoen
,
A.
, and
Mativenga
,
P.
,
2008
, “
White Layer Formation and Hardening Effects in Hard Turning of H13 Tool Steel With CrTiAlN and CrTiAlN/MoST-Coated Carbide Tools
,”
Int. J. Adv. Manuf. Technol.
,
36
(
7–8
), pp.
650
657
.
9.
Yang
,
Y.
,
Fang
,
H.
, and
Huang
,
W.
,
1996
, “
A Study on Wear Resistance of the White Layer
,”
Tribol. Int.
,
29
(
5
), pp.
425
428
.
10.
Guo
,
Y. B.
,
Warren
,
A. W.
, and
Hashimoto
,
F.
,
2010
, “
The Basic Relationships Between Residual Stress, White Layer, and Fatigue Life of Hard Turned and Ground Surfaces in Rolling Contact
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
2
), pp.
129
134
.
11.
Turley
,
D.
,
1975
, “
The Nature of the White-Etching Surface Layers Produced During Reaming Ultra-High Strength Steel
,”
Mater. Sci. Eng.
,
19
(
1
), pp.
79
86
.
12.
Sharman
,
A. R. C.
,
Amarasinghe
,
A.
, and
Ridgway
,
K.
,
2008
, “
Tool Life and Surface Integrity Aspects When Drilling and Hole Making in Inconel 718
,”
J. Mater. Process. Technol.
,
200
(
1–3
), pp.
424
432
.
13.
Ekmekci
,
B.
,
2007
, “
Residual Stresses and White Layer in Electric Discharge Machining (EDM)
,”
Appl. Surf. Sci.
,
253
(
23
), pp.
9234
9240
.
14.
Hosmani
,
S. S.
,
Schacherl
,
R. E.
, and
Mittemeijer
,
E. J.
,
2006
, “
Microstructure of the ‘White Layer’ Formed on Nitrided Fe-7wt. % Cr Alloys
,”
Z. Metallkd.
,
97
(
11
), pp.
1545
1549
.
15.
Griffiths
,
B.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
.
16.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
TEM Study on the Surface White Layer in Two Turned Hardened Steels
,”
Mater. Sci. Eng., A
,
325
(
1–2
), pp.
356
364
.
17.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng., A
,
390
(
1–2
), pp.
88
97
.
18.
Hosseini
,
S. B.
,
Beno
,
T.
,
Klement
,
U.
,
Kaminski
,
J.
, and
Ryttberg
,
K.
,
2014
, “
Cutting Temperatures During Hard Turning—Measurements and Effects on White Layer Formation in AISI 52100
,”
J. Mater. Process. Technol.
,
214
(
6
), pp.
1293
1300
.
19.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Rech
,
J.
,
Coret
,
M.
, and
Feulvarch
,
E.
,
2013
, “
Modeling of Surface Dynamic Recrystallisation During the Finish Turning of the 15-5PH Steel
,”
Procedia CIRP
,
8
, pp.
311
315
.
20.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Coret
,
M.
,
Feulvarch
,
E.
, and
Rech
,
J.
,
2011
, “
Surface Integrity Prediction in Finish Turning of 15-5PH Stainless Steel
,”
Procedia Eng.
,
19
, pp.
270
275
.
21.
Mondelin
,
A.
,
Rech
,
J.
,
Feulvarch
,
E.
, and
Coret
,
M.
,
2014
, “
Characterisation of Surface Martensite—Austenite Transformation During Finish Turning of an AISI S15500 Stainless Steel
,”
Int. J. Mach. Machinabil. Mater.
,
15
(
1–2
), pp.
101
121
.
22.
Poulachon
,
G.
,
Albert
,
A.
,
Schluraff
,
M.
, and
Jawahir
,
I. S.
,
2005
, “
An Experimental Investigation of Work Material Microstructure Effects on White Layer Formation in PCBN Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
211
218
.
23.
Umbrello
,
D.
, and
Jawahir
,
I. S.
,
2009
, “
Numerical Modeling of the Influence of Process Parameters and Workpiece Hardness on White Layer Formation in AISI 52100 Steel
,”
Int. J. Adv. Manuf. Technol.
,
44
(
9–10
), pp.
955
968
.
24.
Ekmekci
,
B.
,
2009
, “
White Layer Composition, Heat Treatment, and Crack Formation in Electric Discharge Machining Process
,”
Metall. Mater. Trans. B
,
40
(
1
), pp.
70
81
.
25.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.
26.
Thiele
,
J. D.
,
Melkote
,
S. N.
,
Peascoe
,
R. A.
, and
Watkins
,
T. R.
,
2000
, “
Effect of Cutting-Edge Geometry and Workpiece Hardness on Surface Residual Stresses in Finish Hard Turning of AISI 52100 Steel
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
642
649
.
27.
Warren
,
A. W.
,
Guo
,
Y. B.
, and
Weaver
,
M. L.
,
2006
, “
The Influence of Machining Induced Residual Stress and Phase Transformation on the Measurement of Subsurface Mechanical Behavior Using Nanoindentation
,”
Surf. Coat. Technol.
,
200
(
11
), pp.
3459
3467
.
28.
Rech
,
J.
, and
Moisan
,
A.
,
2003
, “
Surface Integrity in Finish Hard Turning of Case-Hardened Steels
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
543
550
.
29.
Umbrello
,
D.
, and
Filice
,
L.
,
2009
, “
Improving Surface Integrity in Orthogonal Machining of Hardened AISI 52100 Steel by Modeling White and Dark Layers Formation
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
73
76
.
30.
Kundrák
,
J.
,
Gácsi
,
Z.
,
Gyáni
,
K.
,
Bana
,
V.
, and
Tomolya
,
G.
,
2011
, “
X-Ray Diffraction Investigation of White Layer Development in Hard-Turned Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
457
469
.
31.
Courbon
,
C.
,
Mabrouki
,
T.
,
Rech
,
J.
,
Mazuyer
,
D.
, and
D'Eramo
,
E.
,
2013
, “
On the Existence of a Thermal Contact Resistance at the Tool-Chip Interface in Dry Cutting of AISI 1045: Formation Mechanisms and Influence on the Cutting Process
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1311
1325
.
32.
Iqbal
,
S.
,
Mativenga
,
P.
, and
Sheikh
,
M.
,
2008
, “
An Investigative Study of the Interface Heat Transfer Coefficient for Finite Element Modelling of High-Speed Machining
,”
Proc. Inst. Mech. Eng.
, Part B,
222
(
11
), pp.
1405
1416
.
33.
Ben Moussa
,
N.
,
Sidhom
,
H.
, and
Braham
,
C.
,
2012
, “
Numerical and Experimental Analysis of Residual Stress and Plastic Strain Distributions in Machined Stainless Steel
,”
Int. J. Mech. Sci.
,
64
(
1
), pp.
82
93
.
34.
Du
,
J.
,
Liu
,
Z. Q.
, and
Lv
,
S. Y.
,
2014
, “
Deformation-Phase Transformation Coupling Mechanism of White Layer Formation in High Speed Machining of FGH95 Ni-Based Superalloy
,”
Appl. Surf. Sci.
,
292
, pp.
197
203
.
You do not currently have access to this content.