The problem of improving the delamination resistance and toughness of laminate fiber-reinforced composites especially for the drop-off structure is receiving considerable attention with the increasing need and application in industries. A hot melt-bonding process is developed to bond glass fabric laminates and the thermoplastic (TP) polysulfone (PSU) interleaf prior to the vacuum assisted resin transfer molding (VARTM) of laminate composites. The TP interleaf is heated above the glass transition temperature to reduce the viscosity when penetrating deeply into the glass fiber fabric. Mechanical tensile testing is performed to quantify the effects of the penetration depth on composite delamination resistance and composite toughness under different melt-bonding temperatures. Crack paths are observed by optical microscopy to characterize the crack propagation and arrest mechanism. Postmortem high-resolution imaging of the fracture surfaces is used to characterize the toughening mechanism of the TP interleaf reinforcements by using scanning electron microscopy (SEM). With deep penetration of the interleaf into the fiber bundles, cracks arrested within the penetration region improve the toughness by avoiding the cracks to reach the weak interface between interleaf and epoxy.

References

References
1.
Leach
,
D. C.
, and
Moore
,
D. R.
,
1985
, “
Toughness of Aromatic Polymer Composites Reinforced With Carbon Fibers
,”
Compos. Sci. Technol.
,
23
(
2
), pp.
131
161
.
2.
Takashi
,
I.
, and
Masamichi
,
M.
,
1997
, “
Compression After Impact (CAI) Properties of Hat Stiffened CF/PEEK Panels Fabricated Through a Route Without Autoclave
,”
ICCM-11
, Gold Coast, Australia, July 14–17, pp.
1
9
.
3.
Cairns
,
D. S.
,
Mandell
,
J. F.
,
Scott
,
M. E.
, and
Maccagnano
,
J. Z.
,
1999
, “
Design and Manufacturing Considerations for Ply Drops in Composite Structures
,”
Compos. Part B: Eng.
,
30
(
5
), pp.
523
534
.
4.
Ozdil
,
F.
, and
Carlsson
,
L. A.
,
1992
, “
Mode I Interlaminar Fracture of Interleaved Graphite/Epoxy
,”
J. Compos. Mater.
,
26
(
3
), pp.
433
459
.
5.
Groleau
,
M. R.
,
Shi
,
Y. B.
,
Yee
,
A. F.
,
Bertram
,
J. L.
,
Sue
,
H. J.
, and
Yang
,
P. C.
,
1996
, “
Mode II Fracture of Composites Interleafed With Nylon Particles
,”
Compos. Sci. Technol.
,
56
(
11
), pp.
1223
1240
.
6.
Hillermeier
,
R. W.
, and
Sefeis
,
J. C.
,
2001
, “
Interleaf Toughening of Resin Transfer Molding Composites
,”
Compos.: Part A
,
32
(
5
), pp.
721
729
.
7.
Li
,
G.
,
Li
,
P.
,
Zhang
,
C.
,
Yu
,
Y. H.
,
Liu
,
H. Y.
,
Zhang
,
S.
,
Jia
,
X. L.
,
Yang
,
X. P.
,
Xue
,
Z. M.
, and
Ryu
,
S. K.
,
2008
, “
Inhomogeneous Toughening of Carbon Fiber/Epoxy Composite Using Electrospun Polysulfone Nanofibrous Membranes by in Situ Phase Separation
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
987
994
.
8.
Magniez
,
K.
,
Chaffraix
,
T.
, and
Fox
,
B.
,
2011
, “
Toughening of a Carbon-Fibre Composite Using Electrospun Poly(Hydroxyether of Bisphenol A) Nanofibrous Membranes Through Inverse Phase Separation and Inter-Domain Etherification
,”
Materials
,
4
(
12
), pp.
1967
1984
.
9.
Zhang
,
J.
,
Yang
,
T.
,
Lin
,
T.
, and
Wang
,
C. H.
,
2012
, “
Phase Morphology of Nanofibre Interleafs: Critical Factor for Toughening Carbon/Epoxy Composites
,”
Compos. Sci. Technol.
,
72
(
2
), pp.
256
262
.
10.
Wu
,
X. F.
,
Rahman
,
A.
,
Zhou
,
Z. P.
,
Pelot
,
D. D.
,
Sinha-Ray
,
S.
,
Chen
,
B.
,
Payne
,
S.
, and
Yarin
,
A. L.
,
2012
, “
Electrospinning Core-Shell Nanofibers for Interfacial Toughening and Self-Healing of Carbon-Fiber/Epoxy Composites
,”
J. Appl. Polym. Sci.
,
129
(
3
), pp.
1383
1393
.
11.
Kuwata
,
W.
, and
Hogg
,
P. J.
,
2011
, “
Interlaminar Toughness of Interleaved CFRP Using Non-Woven Veils
,”
Compos.: Part A
,
42
(
10
), pp.
1551
1570
.
12.
Matsuda
,
S.
,
Hojo
,
M.
,
Ochiai
,
S. A.
,
Murakami
,
Akimoto
,
H.
, and
Ando
,
M.
,
1999
, “
Effect of Ionomer Thickness on Mode I Interlaminar Fracture Toughness for Ionomer Toughened CFRP
,”
Compos. Part A
,
30
(
11
), pp.
1311
1319
.
13.
Hojo
,
M.
,
Matsuda
,
S.
,
Tanaka
,
M.
,
Ochiai
,
S.
, and
Murakami
,
A.
,
2006
, “
Mode I Delamination Fatigue Properties of Interleaf-Toughened CF/Epoxy Laminates
,”
Compos. Sci. Technol.
,
66
(
5
), pp.
665
675
.
14.
Hojo
,
M.
,
Matsuda
,
S.
,
Ochiai
,
S.
,
Marukami
,
A.
, and
Akimoto
,
H.
, “
The Role of Interleaf/Base Lamina Interphase in Toughening Mechanism of Interleaf-Toughened CFRP
,”
ICCM-12 Conference
,
Paris
, p.
410
.
15.
Jensen
,
F. M.
,
Falzon
,
B. G.
,
Ankersen
,
J.
, and
Stang
,
H.
,
2006
, “
Structural Testing and Numerical Simulation of a 34m Composite Wind Turbine Blade
,”
Compos. Struct.
,
76
(
1–2
), pp.
52
61
.
16.
2010
, “
Upsizing Blade Test Regimes
,” Composites Technology, Last accessed Sept. 15, 2015.
17.
Shim
,
D. J.
, and
Lagace
,
P. A.
,
2006
, “
Mechanisms and Structural Parameters Affecting the Interlaminar Stress Field in Laminates With Ply Drop-Offs
,”
J. Compos. Mater.
,
40
(
11
), pp.
345
369
.
18.
Shim
,
D. J.
,
2002
, “
Role of Delamination and Interlaminar Fatigue in the Failure of Laminates With Ply Dropoffs
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Boston, MA.
19.
Chen
,
S. F.
, and
Zhang
,
B. Z.
,
1991
, “
Fracture Behavior of Interleaved Fiber-Resin Composites
,”
Compos. Sci. Technol.
,
41
(
1
), pp.
77
97
.
20.
Brewer
,
J. C.
, and
Lagace
,
P. A.
,
1988
, “
Quadratic Stress Criterion for Initiation of Delamination
,”
J. Compos. Mater.
,
22
(
12
), pp.
1141
1155
.
21.
Aksoy
,
A.
, and
Carlsson
,
L. A.
,
1991
, “
Crack Tip Yield Zone Estimates in Mode II Interlaminar Fracture of Interleaved Composites
,”
Eng. Fract. Mech.
,
39
(
3
), pp.
525
534
.
22.
Smiley
,
A. J.
,
Chao
,
M.
, and
Gillespie
,
J. W.
,
1991
, “
Influence and Control of Bondline Thickness in Fusion Bonded Joints of Thermoplastic Composites
,”
Compos. Manuf.
,
2
(
3–4
), pp.
223
231
.
23.
SolvayPlastic
, Udel@PSU Design Guide, p.
55
.
24.
Woods
,
J.
,
Modin
,
A. E.
,
Hawkins
,
R. D.
, and
Hanks
,
D. J.
,
2002
, “
Controlled Atmospheric Pressure Infusion Process
,” International Patent WO 03/101708 A1.
25.
Niggemann
,
C.
,
Young
,
S. S.
,
Gillespie
,
J. W.
, and
Heider
,
D.
,
2008
, “
Experimental Investigation of the Controlled Atmospheric Pressure Resin Infusion (CAPRI) Process
,”
J. Compos. Mater.
,
42
(
11
), pp.
1049
1061
.
26.
Mandell
,
J. F.
,
Samborsky
,
D. D.
,
Agastra
,
P.
,
Sears
,
A. T.
, and
Wilson
,
T. J.
,
2010
, “
Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials
,” Contractor Report No. SAND2010-7052, Sandia National Laboratories,
Contractor Report No. SAND2010-7052
.
You do not currently have access to this content.