The working surface condition of abrasive tool is one of the important issues in grinding process. This article discusses the effects of the ultrasonic vibration on the working surface condition involving chips adhesion and abrasive grains wear during ultrasonic-assisted grinding (UAG) of Inconel 718 with an electroplated cBN grinding quill as the abrasive tool. In this study, scanning electron microscopic (SEM) observations were performed on the quill working surface before and after grinding at different vibration amplitudes, and the SEM images were filtered, extracted, and binarized by using image-pro plus to evaluate the quill working surface condition. The obtained results demonstrated that (1) the wear of grinding quill is dominantly attributed to chips adhesion, grains releasing, and grains fracture; (2) both the percentage of chips adhesion area and the size of chips adhered tend to decrease as the vibration amplitude increases; in contrast, the effect of ultrasonic vibration on the number of chips adhesion is not noticeable; (3) the percentage of the number of grains released/fractured decreases as the vibration amplitude rises, e.g., the percentage in UAG at vibration amplitude of App = 9.4 μm was decreased by 40% compared to that in conventional grinding (CG); and (4) higher distribution density of effective cutting edges can be achieved under larger vibration amplitude, and the mean area of effective cutting edges in UAG is smaller than that in CG, demonstrating that the ultrasonication enhances the grinding quill sharpness.

References

References
1.
Sharman
,
A.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
,
2001
, “
Tool When High Speed Ball Nose End Milling Inconel 718
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
29
35
.
2.
Sharman
,
A. R. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2015
, “
The Effect of Tool Nose Radius on Surface Integrity and Residual Stresses When Turning Inconel 718
,”
J. Mater. Process. Technol.
,
216
, pp.
123
132
.
3.
Radhakrishna
,
C. H.
, and
Prasad Rao
,
K.
,
1997
, “
The Formation and Control of Laves Phase in Superalloy 718 Welds
,”
J. Mater. Sci.
,
32
(
8
), pp.
1977
1984
.
4.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kwon
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti-6Al-4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.
5.
Herbert
,
C.
,
Axinte
,
D. A.
,
Hardy
,
M.
, and
Withers
,
P.
,
2014
, “
Influence of Surface Anomalies Following Hole Making Operations on the Fatigue Performance for a Nickel-Based Superalloy
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051016
.
6.
Khidhir
,
B. A.
, and
Mohamed
,
B.
,
2010
, “
Machining of Nickel Based Alloys Using Different Cemented Carbide Tools
,”
J. Eng. Sci. Technol.
,
5
(
3
), pp.
264
271
.
7.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
8.
Ozcelik
,
B.
,
Oktem
,
H.
, and
Kurtaran
,
H.
,
2005
, “
Optimum Surface Roughness in End Milling Inconel 718 by Coupling Neural Network Model and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
27
(
3
), pp.
234
241
.
9.
Sonawane
,
H. A.
, and
Joshi
,
S. S.
,
2015
, “
Analytical Modeling of Chip Geometry in High-Speed Ball-End Milling on Inclined Inconel-718 Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011005
.
10.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.
11.
Tayon
,
W. A.
,
Shenoy
,
R. N.
,
Redding
,
M. R.
,
Keith Bird
,
R.
, and
Hafley
,
R. A.
,
2014
, “
Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061005
.
12.
Devillez
,
A.
,
Schneider
,
F.
,
Dominiak
,
S.
,
Dudzinski
,
D.
, and
Larrouquere
,
D.
,
2007
, “
Cutting Forces and Wear in Dry Machining of Inconel 718 With Coated Carbide Tools
,”
Wear
,
262
(
7–8
), pp.
913
942
.
13.
Xu
,
W.
,
Zhang
,
L. C.
, and
Wu
,
Y.
,
2014
, “
Elliptic Vibration-Assisted Cutting of Fibre-Reinforced Polymer Composites: Understanding the Material Removal Mechanisms
,”
Compos. Sci. Technol.
,
92
, pp.
103
111
.
14.
Welling
,
D.
,
2014
, “
Results of Surface Integrity and Fatigue Study of Wire-EDM Compared to Broaching and Grinding for Demanding Jet Engine Components Made of Inconel 718
,”
Proc. CIRP
,
13
, pp.
339
344
.
15.
Devillez
,
A.
,
Le Coz
,
G.
,
Dominiak
,
S.
, and
Dudzinski
,
D.
,
2011
, “
Dry Machining of Inconel 718, Workpiece Surface Integrity
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1590
1598
.
16.
Zhena
,
J.
,
Li
,
F.
,
Zhu
,
S.
,
Ma
,
J.
,
Qiao
,
Z.
,
Liu
,
W.
, and
Yang
,
J.
,
2014
, “
Friction and Wear Behavior of Nickel-Alloy-Based High Temperature Self-Lubricating Composites Against Si3N4 and Inconel 718
,”
Tribol. Int.
,
75
, pp.
1
9
.
17.
Ranganath
,
S.
,
Guo
,
C.
, and
Holt
,
S.
, “
Experimental Investigations Into the Carbide Cracking Phenomenon on Inconel 718 Superalloy Material
,”
ASME
Paper No. MSEC2009-84085.
18.
Nadolny
,
K.
,
Sienicki
,
W.
, and
Wojtewicz
,
M.
,
2014
, “
The Effect Upon the Grinding Wheel Active Surface Condition When Impregnation With Non-Metallic Elements During Internal Cylindrical Grinding of Titanium
,”
Arch. Civil Mech. Eng.
,
15
(
1
), pp.
529
533
.
19.
Zemzemi
,
F.
,
Rech
,
J.
,
Ben Salem
,
W.
,
Dogui
,
A.
, and
Kapsa
,
Ph.
,
2014
, “
Identification of Friction and Heat Partition Model at the Tool-Chip-Workpiece Interfaces in Dry Cutting of an Inconel 718 Alloy With CBN and Coated Carbide Tools
,”
Adv. Manuf. Sci. Technol.
,
38
(
1
), pp.
5
22
.
20.
Malkin
,
S.
, and
Cook
,
N. H.
,
1971
, “
The Wear of Grinding Wheels, Part 2-Fracture Wear
,”
ASME J. Manuf. Sci. Eng.
,
93
(
4
), pp.
1129
1133
.
21.
Linke
,
B. S.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
060801
.
22.
Adibi
,
H.
,
Rezaei
,
S. M.
, and
Sarhan
,
A. A. D.
,
2013
, “
Grinding Wheel Loading Evaluation Using Digital Image Processing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011012
.
23.
Ismail
,
M. F.
,
Yanagi
,
K.
, and
Isobe
,
H.
,
2012
, “
Geometrical Transcription of Diamond Electroplated Tool in Ultrasonic Vibration Assisted Grinding of Steel
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
24
31
.
24.
Nik
,
M. G.
,
Movahhedy
,
M. R.
, and
Akbari
,
J.
,
2012
, “
Ultrasonic-Assisted Grinding of Ti6Al4V Alloy
,”
Proc. CIRP
,
1
, pp.
353
358
.
25.
Park
,
K.-H.
,
Hong
,
Y.-H.
,
Kim
,
K.-T.
,
Lee
,
S.-W.
,
Choi
,
H.-Z.
, and
Choi
,
Y.-J.
,
2014
, “
Understanding of Ultrasonic Assisted Machining With Diamond Grinding Tool
,”
Mod. Mech. Eng.
,
4
(
1
), pp.
1
7
.
26.
Cao
,
J.
,
Wu
,
Y.
,
Lu
,
D.
,
Fujimoto
,
M.
, and
Nomura
,
M.
,
2014
, “
Material Removal Behavior in Ultrasonic-Assisted Scratching of SiC Ceramics With a Single Diamond Tool
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
49
61
.
27.
Subramanian
,
K.
,
Ramanath
,
S.
, and
Tricard
,
M.
,
1997
, “
Mechanism of Material Removal in the Precision Grinding of Ceramic
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
1
19
.
28.
Wang
,
Y.
,
Lin
,
B.
,
Wang
,
S.
, and
Cao
,
X.
,
2014
, “
Study on the System Matching of Ultrasonic Vibration Assisted Grinding for Hard and Brittle Materials Processing
,”
Int. J. Mach. Tools Manuf.
,
77
, pp.
66
73
.
29.
Liang
,
Z.
,
Wu
,
Y.
,
Wang
,
X.
, and
Zhao
,
W.
,
2010
, “
A New Two-Dimensional Ultrasonic Assisted Grinding (2D-UAG) Method and Its Fundamental Performance in Monocrystal Silicon Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
728
736
.
30.
Mult
,
H. C.
,
Spur
,
I. G.
, and
Holl
,
S.-E.
,
1996
, “
Ultrasonic Assisted Grinding of Ceramics
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
287
293
.
31.
Pei
,
Z. J.
,
Ferreira
,
P. M.
,
Kapoor
,
S. G.
, and
Haselkorn
,
M.
,
1995
, “
Rotary Ultrasonic Machining for Face Milling of Ceramics
,”
Int. J. Mach. Tools Manuf.
,
35
(
7
), pp.
1033
1046
.
32.
Liu
,
D. F.
,
Cong
,
W. L.
,
Pei
,
Z. J.
, and
Tang
,
Y. J.
,
2012
, “
A Cutting Force Model for Rotary Ultrasonic Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
77
84
.
33.
Zahedi
,
A.
,
Tawakoli
,
T.
, and
Akbari
,
J.
,
2015
, “
Energy Aspects and Workpiece Surface Characteristics in Ultrasonic Assisted Cylindrical Grinding of Alumina-Zirconia Ceramics
,”
Arch. Civil Mech. Eng.
,
90
, pp.
16
28
.
34.
Bhaduri
,
D.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Novovic
,
D.
,
Harden
,
P.
,
Bohr
,
S.
, and
Martin
,
D.
,
2012
, “
A Study on Ultrasonic Assisted Creep Feed Grinding of Nickel Based Superalloys
,”
Proc. CIRP
,
1
, pp.
359
364
.
35.
Bhaduri
,
D.
,
Soo
,
S. L.
,
Novovic
,
D.
,
Aspinwall
,
D. K.
,
Harden
,
P.
,
Waterhouse
,
C.
,
Bohr
,
S.
,
Mathieson
,
A. C.
, and
Lucas
,
M.
,
2013
, “
Ultrasonic Assisted Creep Feed Grinding of Inconel 718
,”
Proc. CIRP
,
6
, pp.
616
621
.
36.
Tso
,
P.-L.
,
1995
, “
Study on the Grinding of Inconel 718
,”
Int. J. Mater. Process. Technol.
,
55
(
3–4
), pp.
421
426
.
37.
Marinescu
,
I. D.
,
Hitchiner
,
M. P.
,
Uhlmann
,
E.
,
Brian Rowe
,
W.
, and
Inasak
,
I.
,
2006
,
Handbook of Machining With Grinding Wheels
,
CRC, Technology and Engineering
, New York, p.
632
.
38.
Kapłonek
,
W.
, and
Nadolny
,
K.
,
2013
, “
Assessment of the Grinding Wheel Active Surface Condition Using SEM and Image Analysis Techniques
,”
J. Braz. Soc. Mech. Sci. Eng.
,
35
(
3
), pp.
207
215
.
39.
Kapłonek
,
W.
,
Łukianowicz
,
C.
, and
Nadolny
,
K.
,
2012
, “
Methodology of the Assessment of the Abrasive Tool's Active Surface Using Laser Scatterometry
,”
Trans. Can. Soc. Mech. Eng.
,
36
(
1
), pp.
49
66
.
40.
Sharp
,
K. W.
,
Miller
,
M. H.
, and
Scattergoodc
,
R. O.
,
2000
, “
Analysis of the Grain Depth-of-Cut in Plunge Grinding
,”
Precis. Eng.
,
24
(
3
), pp.
220
230
.
41.
Agarwal
,
S.
, and
Venkateswara Rao
,
P.
,
2008
, “
Experimental Investigation of Surface/Subsurface Damage Formation and Material Removal Mechanisms in SiC Grinding
,”
Mach. Tools Manuf.
,
48
(
6
), pp.
698
710
.
42.
Sharp
,
K. W.
,
Miller
,
M. H.
, and
Scattergoodc
,
R. O.
,
2008
, “
Micro Fracture Behavior of Cutting Edges in Grinding Using Single Crystal cBN Grains
,”
Diamond Relat. Mater.
,
17
(
7–10
), pp.
1759
1763
.
43.
Lv
,
D.
,
Wang
,
H.
,
Tang
,
Y.
, and
Huang
,
Y.
,
2012
, “
Surface Observations and Material Removal Machining of Brittle Material
,”
Int. J. Eng. Manuf.
,
226
(
9
), pp.
1
10
.
44.
Agarwal
,
S.
, and
Venkateswara Rao
,
P.
,
2013
, “
Predictive Modeling of Force and Power Based on a New Analytical Undeformed Chip Thickness Model in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
68
78
.
45.
Wu
,
Y.
,
Nomura
,
M.
,
Feng
,
Z.
, and
Kato
,
M.
,
2004
, “
Modeling of Grinding Force in Constant-Depth-of-Cut Ultrasonically Assisted Grinding
,”
Mater. Sci. Forum
,
471
(
2
), pp.
6
10
.
You do not currently have access to this content.