This paper considers multiobjective optimization under uncertainty (MOOUC) for the selection of optimal cutting conditions in advanced abrasive machining (AAM) processes. Processes considered are water jet machining (WJM), abrasive water jet machining (AWJM), and ultrasonic machining (USM). Decisions regarding the cutting conditions can involve optimization for multiple competing goals, such as surface finish, machining time, and power consumption. In practice, there is also an issue of variations in the ability to attain the performance goals. This can be due to limitations in machine accuracy or variations in material properties of the workpiece and/or abrasive particles. The approach adopted in this work relies on a strength Pareto evolutionary algorithm (SPEA2) framework, with specially tailored dominance operators to account for probabilistic aspects in the considered multiobjective problem. Deterministic benchmark problems in the literature for the considered machining processes are extended to include performance uncertainty and then used in testing the performance of the proposed approach. Results of the study show that accounting for process variations through a simple penalty term may be detrimental for the multiobjective optimization. On the other hand, a proposed fuzzy-tournament dominance operator appears to produce favorable results.

References

References
1.
DeGarmo
,
E. P.
,
Black
,
J. T.
, and
Kohser
,
R. A.
,
1997
,
Materials and Processes in Manufacturing
,
Wiley
,
Hoboken, NJ
.
2.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2005
,
Manufacturing Engineering and Technology
,
Pearson Education, NJ
.
3.
Alting
,
L.
,
1982
,
Manufacturing Engineering Processes
,
Marcel Dekker
,
New York
.
4.
Jain
,
N. K.
,
Jain
,
V. K.
, and
Deb
,
K.
,
2007
, “
Optimization of Process Parameters of Mechanical Type Advanced Machining Processes Using Genetic Algorithms
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
900
919
.
5.
Rao
,
R. V.
,
2011
,
Advanced Modeling and Optimization of Manufacturing Processes
,
Springer-Verlag
,
London
.
6.
Jain
,
N. K.
, and
Jain
,
V. K.
,
2001
, “
Modeling of Material Removal in Mechanical Type of Advanced Machining Processes: A State-of-Art Review
,”
Int. J. Mach. Tools Manuf.
,
41
(
11
), pp.
1573
1635
.
7.
Hashish
,
M.
, and
duPlessis
,
M. P.
,
1978
, “
Theoretical and Experimental Investigation of Continuous Jet Penetration of Solids
,”
J. Eng. Ind.
,
100
(
1
), pp.
88
94
.
8.
Hashish
,
M.
, and
duPlessis
,
M. P.
,
1979
, “
Prediction Equations Relating High Velocity Jet Cutting Performance to Stand-Off-Distance and Multipasses
,”
J. Eng. Ind.
,
101
(
3
), pp.
311
318
.
9.
Leu
,
M. C.
,
Meng
,
P.
,
Geskinand
,
E. S.
, and
Tismeneskiy
,
L.
,
1998
, “
Mathematical Modeling and Experimental Verification of Stationary Water Jet Cleaning Process
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
571
579
.
10.
Meng
,
P.
,
Geskin
,
E. S.
,
Leu
,
M. C.
, and
Tismeneskiy
,
L.
,
1998
, “
An Analytical and Experimental Study of Cleaning With Moving Water Jets
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
580
589
.
11.
Shaw
,
M. C.
,
1956
, “
Ultrasonic Grinding
,”
Microtechnic
,
10
(
6
), pp.
257
265
.
12.
Miller
,
G. E.
,
1957
, “
Special Theory of Ultrasonic Machining
,”
J. Appl. Phys.
,
28
(
2
), pp.
149
156
.
13.
Rosenberg
,
L. D.
,
Kazantsev
,
V. F.
,
Makarov
,
L. O.
, and
Yakhimovich
,
D. F.
,
1964
,
Ultrasonic Cutting
,
Consultant Bureau
,
New York
.
14.
Kainth
,
G. S.
,
Nandy
,
A.
, and
Singh
,
K.
,
1979
, “
On the Mechanics of Material Removal in Ultrasonic Machining
,”
Int. J. Mach. Tool Des. Res.
,
19
(
1
), pp.
33
41
.
15.
Nair
,
E. V.
, and
Ghosh
,
A.
,
1985
, “
A Fundamental Approach to the Study of the Mechanics of Ultrasonic Machining
,”
Int. J. Prod. Res.
,
23
(
4
), pp.
731
753
.
16.
Wang
,
Z. Y.
, and
Rajurkar
,
K. P.
,
1996
, “
Dynamic Analysis of the Ultrasonic Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
376
381
.
17.
Lee
,
T. C.
, and
Chan
,
C. W.
,
1997
, “
Mechanism of Ultrasonic Machining of Ceramic Composites
,”
J. Mater. Process. Technol.
,
71
(
2
), pp.
195
201
.
18.
Hashish
,
M.
,
1984
, “
A Modeling Study of Metal Cutting With Abrasive Water Jets
,”
ASME J. Eng. Mater. Technol.
,
106
(
1
), pp.
88
100
.
19.
Hashish
,
M.
,
1989
, “
A Model for Abrasive Water Jet (AWJ) Machining
,”
ASME J. Eng. Mater. Technol.
,
111
(
2
), pp.
154
162
.
20.
Paul
,
S.
,
Hoogstrate
,
A. M.
,
Van Luttervelt
,
C. A.
, and
Kals
,
H. J. J.
,
1998
, “
Analytical and Experimental Modeling of Abrasive Water Jet Cutting of Ductile Materials
,”
J. Mater. Process. Technol.
,
73
(1–3), pp.
189
199
.
21.
Paul
,
S.
,
Hoogstrate
,
A. M.
,
Van Luttervelt
,
C. A.
, and
Kals
,
H. J. J.
,
1998
, “
Analytical Modeling of the Total Depth of Cut in Abrasive Water Jet Machining of Polycrystalline Brittle Materials
,”
J. Mater. Process. Technol.
,
73
(1–3), pp.
206
212
.
22.
Choi
,
G. S.
, and
Choi
,
G. H.
,
1997
, “
Process Analysis and Monitoring in Abrasive Water Jet Machining of Alumina Ceramics
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
295
307
.
23.
Chakravarthy
,
P. S.
, and
Babu
,
N. R.
,
2000
, “
A Hybrid Approach for Selection of Optimal Process Parameters in Abrasive Water Jet Cutting
,”
Proc. Inst. Mech. Eng., Part B
,
214
(
9
), pp.
781
791
.
24.
Rao
,
R. V.
,
Pawar
,
P. V.
, and
Davim
,
J. P.
,
2010
, “
Parameter Optimization of Ultrasonic Machining Process Using Non-Traditional Optimization Algorithms
,”
Mater. Manuf. Processes
,
25
(
10
), pp.
1120
1130
.
25.
Rao
,
R. V.
,
Pawar
,
P. V.
, and
Shankar
,
R.
,
2008
, “
Multi-Objective Optimization of Electrochemical Machining Process Parameters Using a Particle Swarm Optimization Algorithm
,”
J. Eng. Manuf.
,
222
(
8
), pp.
949
958
.
26.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
27.
Simpson
,
T.
,
Mauery
,
T.
,
Korte
,
J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
28.
Kokkolaras
,
M.
,
Mourelatos
,
Z.
, and
Papalambros
,
P.
,
2005
, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
.
29.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
30.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
31.
Coello
,
C. C.
,
Van Veldhuizen
,
D. A.
, and
Lamont
,
G. B.
,
2013
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer
,
Berlin
.
32.
Hamel
,
J. M.
, and
Azarm
,
S.
,
2010
, “
Reducible Uncertain Interval Design (RUID) by Kriging Meta-Model Assisted Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011002
.
33.
Cong
,
W. L.
,
Pei
,
Z. J.
,
Deines
,
T. W.
,
Srivastava
,
A.
,
Riley
,
L.
, and
Treadwell
,
C.
,
2012
, “
Rotary Ultrasonic Machining of CFRP Composites: A Study on Power Consumption
,”
Ultrasonics
,
52
(
8
), pp.
1030
1037
.
34.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multi-Objective Evolutionary Algorithms: A Comparative Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
35.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
,
2001
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
,” Swiss Federal Institute of Technology, Zurich, Switzerland,
TIK-Report No. 103
.
36.
Sahoo
,
N. C.
,
Ganguly
,
S.
, and
Das
,
D.
,
2012
, “
Fuzzy-Pareto-Dominance Driven Possibilistic Model Based Planning of Electrical Distribution Systems Using Multi-Objective Particle Swarm Optimization
,”
Expert Syst. Appl.
,
39
(
1
), pp.
881
893
.
37.
Ganguly
,
S.
,
Sahoo
,
N. C.
, and
Das
,
D.
,
2013
, “
Multi-Objective Particle Swarm Optimization Based on Fuzzy-Pareto-Dominance for Possibilistic Planning of Electrical Distribution Systems Incorporating Distributed Generation
,”
Fuzzy Sets Syst.
,
213
, pp.
47
73
.
38.
Sivanandam
,
S. N.
,
Sumathi
,
S.
, and
Deepa
,
S. N.
,
2007
,
Introduction to Fuzzy Logic Using MATLAB
,
Springer
,
Berlin
.
39.
Michalewiz
,
Z.
, and
Fogel
,
D. B.
,
2000
,
How to Solve It: Modern Heuristics
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.