Nonquadratic anisotropic yield functions have been developed in recent years for many lightweight automotive sheet metals. Realization of the improved performance of these advanced anisotropic yield functions depends in part on a careful calibration of their material constants via simple mechanical tests. This paper describes a novel approach on the parameter identification of plane–stress polynomial anisotropic yield functions by recasting them in a special form in terms of two principal stresses and one loading orientation angle. Independent mechanical tests for the parameter identification can thus be classified according to the plane stress state and the in-plane loading orientation, respectively. Parameter identification options have been examined in detail for a fourth-order homogeneous polynomial anisotropic yield function using the proposed approach. Some new insights have been gained on the permissible types and the number of independent mechanical test measurements per type that are needed for fully calibrating the material constants of the fourth-order yield function. The use of equal biaxial plastic strain ratio instead of equal biaxial yield stress makes the experimental calibration of the yield function more feasible as only simple in-plane uniaxial tension and out-of-plane compression tests of sheet metal samples are required.

References

References
1.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London A
,
193
(
1033
), pp.
281
297
.
2.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
3.
Gotoh
,
M.
,
1977
, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)
,”
Int. J. Mech. Sci.
,
19
(
9
), pp.
505
520
.
4.
Hill
,
R.
,
1979
, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc
,
85
(01), pp.
179
191
.
5.
Hosford
,
W.
,
1979
, “
On Yield Loci of Anisotropic Cubic Metals
,”
Proceedings of the 7th North American Metalworking Conference (NMRC)
, SME, Dearborn, MI, pp.
191
197
.
6.
Hosford
,
W.
,
1993
,
The Mechanics of Crystals and Textured Polycrystals
,
Oxford University Press
,
Oxford, UK
.
7.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J.
,
Karabin
,
M.
,
Brem
,
J.
, and
Dick
,
R.
,
2005
, “
Linear Transformation Based Anisotropic Yield Function
,”
Int. J. Plast.
,
21
(
5
), pp.
1009
1039
.
8.
Banabic
,
D.
,
Aretz
,
H.
,
Comsa
,
D.
, and
Paraianu
,
L.
,
2005
, “
An Improved Analytical Description of Orthotropy in Metallic Sheets
,”
Int. J. Plast.
,
21
(
3
), pp.
493
512
.
9.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
,
Springer-Verlag
,
Berlin, Germany
.
10.
Bourne
,
L.
, and
Hill
,
R.
,
1950
, “
On the Correlation of the Directional Properties of Rolled Sheets in Tension and Cupping Tests
,”
Philos. Mag.
,
41
(318), pp.
49
53
.
11.
Soare
,
S.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
,
2008
, “
On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions With Applications to Sheet Forming
,”
Int. J. Plast.
,
24
(
6
), pp.
915
944
.
12.
Soare
,
S.
, and
Barlat
,
F.
,
2010
, “
Convex Polynomial Yield Functions
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1804
1818
.
13.
Yoshida
,
F.
,
Hamasaki
,
H.
, and
Uemori
,
T.
,
2013
, “
A User-Friendly 3D Yield Function to Describe Anisotropy of Steel Sheets
,”
Int. J. Plast.
,
45
(6), pp.
119
139
.
14.
Barlat
,
F.
,
Lege
,
D.
, and
Brem
,
J.
,
1991
, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
,
7
(
5
), pp.
693
712
.
15.
Karafillis
,
A.
, and
Boyce
,
M.
,
1993
, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1859
1886
.
16.
Hosford
,
W.
,
1985
, “
Comments on Anisotropic Yield Criteria
,”
Int. J. Mech. Sci.
,
27
(7–8), pp.
423
427
.
17.
Tong
,
W.
,
2005
, “
A New Perspective on the Mathematical Modeling of Highly Nonlinear Anisotropic Plastic Flows in a Heterogeneous Solid
,”
Solid State Phenom.
,
105
, pp.
271
276
.
18.
Tong
,
W.
,
2005
, “
A Planar Plastic Flow Theory of Orthotropic Sheet Metals and the Experimental Procedure for Its Evaluation
,”
Proc. R. Soc. A
,
461
(
2058
), pp.
1775
1809
.
19.
Tong
,
W.
,
2006
, “
A Plane Stress Anisotropic Plastic Flow Theory for Orthotropic Sheet Metals
,”
Int. J. Plast.
,
22
(
3
), pp.
497
535
.
20.
Tong
,
W.
, “
Application of Gotoh's Orthotropic Yield Function for Modeling Advanced High Strength Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
(accepted).
You do not currently have access to this content.