Precision improvement in sheet metal stamping has been the concern that the stamping researchers have engaged in. In order to improve the forming precision of sheet metal in stamping, this paper devoted to establish the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping based on BP neural network. Factors influencing the forming precision of stamping sheet metal were divided, altogether ten factors, and the generalized holo-factors mathematical model of dimension-error and shape-error for sheet metal in stamping was established using the back-propagation algorithm of error based on BP neural network. The undetermined coefficients of the model previously established were soluble according to the simulation data of sheet punching combined with the specific shape based on the BP neural network. With this mathematical model, the forecast data compared with the validate data could be obtained, so as to verify the fine practicability that the previously established mathematical model had, and then, it was shown that the generalized holo-factors mathematical model of size error and shape-error had fine practicality and versatility. Based on the generalized holo-factors mathematical model of error exemplified by the cylindrical parts, a group of process parameters could be selected, in which forming thickness was between 0.713 mm and 1.335 mm, major strain was between 0.085 and 0.519, and minor strain was between −0.596 and 0.319 from the generalized holo-factors mathematical model prediction, at the same time, the forming thickness, the major strain, and the minor strain were in good condition.
Skip Nav Destination
Article navigation
June 2016
Technical Briefs
Study on the Generalized Holo-Factors Mathematical Model of Dimension-Error and Shape-Error for Sheet Metal in Stamping Based on the Back Propagation (BP) Neural Network
Lizhi Gu,
Lizhi Gu
College of Mechanical Engineering and Automation, Huaqiao University,
Xiamen 361021, China
e-mail: gulizhi888@163.com
Xiamen 361021, China
e-mail: gulizhi888@163.com
Search for other works by this author on:
Tianqing Zheng
Tianqing Zheng
College of Mechanical Engineering and Automation, Huaqiao University,
Xiamen 361021, China
e-mail: ztq386@163.com
Xiamen 361021, China
e-mail: ztq386@163.com
Search for other works by this author on:
Lizhi Gu
College of Mechanical Engineering and Automation, Huaqiao University,
Xiamen 361021, China
e-mail: gulizhi888@163.com
Xiamen 361021, China
e-mail: gulizhi888@163.com
Tianqing Zheng
College of Mechanical Engineering and Automation, Huaqiao University,
Xiamen 361021, China
e-mail: ztq386@163.com
Xiamen 361021, China
e-mail: ztq386@163.com
Manuscript received December 12, 2014; final manuscript received March 19, 2016; published online April 29, 2016. Assoc. Editor: Gracious Ngaile.
J. Manuf. Sci. Eng. Jun 2016, 138(6): 064502 (3 pages)
Published Online: April 29, 2016
Article history
Received:
December 12, 2014
Revised:
March 19, 2016
Citation
Gu, L., and Zheng, T. (April 29, 2016). "Study on the Generalized Holo-Factors Mathematical Model of Dimension-Error and Shape-Error for Sheet Metal in Stamping Based on the Back Propagation (BP) Neural Network." ASME. J. Manuf. Sci. Eng. June 2016; 138(6): 064502. https://doi.org/10.1115/1.4033156
Download citation file:
Get Email Alerts
Cited By
Related Articles
Design of Deformable Tools for Sheet Metal Forming
J. Manuf. Sci. Eng (September,2016)
Deformation and Springback Behavior of Sheet Metal With Convex-Shaped Surfaces in Heat-Assisted Incremental Bending Process Based on Minimum Energy Method
J. Manuf. Sci. Eng (March,2023)
A Tailored Tempering Process for CSC-15B22 Steel Sheet
J. Manuf. Sci. Eng (February,2018)
Design for Manufacturing of Variable Microgeometry Cutting Tools
J. Manuf. Sci. Eng (January,2018)
Related Proceedings Papers
Related Chapters
Certification by Data Reports and Stamping
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Datum Targets
Geometric Dimensioning and Tolerancing Handbook: Applications, Analysis & Measurement
Flexible Parts
Geometric Dimensioning and Tolerancing Handbook: Applications, Analysis & Measurement