Visual appearance of an object significantly influences a consumer's choice and largely controls the market economy. The perceived quality of products is governed by surface's optical properties (reflection, refraction, etc.), geometrical properties (roughness, waviness, etc.), and chemical properties (oxide layer formation, thermal variation, etc.). Surface shininess attracts researchers from many different disciplines, in particular manufacturing, metrology, psychology, physiology, and computer science. Unfortunately, there are still huge knowledge gaps on characterizing and appraising shiny surfaces in a reproducible way. This paper introduces the main definitions and physics of shininess and gloss, methods of gloss sensing, and relates these definitions and methods to surface generation by grinding. Automated gloss measurement is difficult in particular for free-form surfaces, and optical quality is still often evaluated by human workers. Gloss models are often based on the bidirectional reflection distribution function (BRDF) of the surface, but the models are commonly not connected with the manufacturing process. This study proposes to consider the geometrical features (defects, waviness, lay, and roughness) of metal surfaces as well as the physical and chemical features (grain structure and microlayers) to understand surface appearance and manufacturing in a holistic way. Preliminary tests show that 2D roughness measurements are not connected well with measured gloss units (GUs) and subjective, perceived quality. More fundamental research on the generation and measurement of surface appearance is needed and would benefit many industries.

References

References
1.
Du
,
P.
, and
MacDonald
,
E. F.
,
2013
, “
Eye-Tracking Data Predicts Importance of Product Features and Saliency of Size Change
,”
ASME
Paper No. DETC2013-12737.
2.
Ho
,
Y.-X.
,
Landy
,
M. S.
, and
Maloney
,
L. T.
,
2008
, “
Conjoint Measurement of Gloss and Surface Texture
,”
Psychol. Sci.
,
19
(
2
), pp.
196
204
.
3.
Kerrigan
,
I. S.
, and
Adams
,
W.
,
2013
, “
Highlights, Disparity, and Perceived Gloss With Convex and Concave Surfaces
,”
J. Vision
,
13
(
1
), pp.
1
10
.
4.
Qi
,
L.
,
2012
, “
Measuring Perceived Gloss of Rough Surfaces
,”
Ph.D. thesis
, Heriot-Watt University, Edinburgh, Scotland.
5.
Ferwerda
,
J. A.
,
Pellacini
,
F.
, and
Greenberg
,
D. P.
,
2001
, “
Psychophysically Based Model of Surface Gloss Perception
,”
Proc. SPIE
4299
, pp.
291
301
.
6.
Kigle-Boeckler
,
G.
,
1995
, “
Measurement of Gloss and Reflection Properties of Surfaces
,”
Met. Finish.
,
93
(
5
), pp.
28
31
.
7.
Whitehouse
,
D. J.
,
Bowen
,
D. K.
,
Venkatesh
,
V. C.
,
Lonardo
,
P.
, and
Brown
,
C. A.
,
1994
, “
Gloss and Surface Topography
,”
CIRP Ann. Manuf. Technol.
,
43
(
2
), pp.
541
549
.
8.
Ozcelik
,
Y.
,
Careddu
,
N.
, and
Yilmazkaya
,
E.
,
2012
, “
The Effects of Freeze–Thaw Cycles on the Gloss Values of Polished Stone Surfaces
,”
Cold Reg. Sci. Technol.
,
82
, pp.
49
55
.
9.
Myller
,
K.
,
Juuti
,
M.
,
Peiponen
,
K. E.
,
Silvennoinen
,
R.
, and
Heikkinen
,
E.
,
2006
, “
Quality Inspection of Metal Surfaces by Diffractive Optical Element-Based Glossmeter
,”
Precis. Eng.
,
30
(
4
), pp.
443
447
.
10.
Farrier
,
L.
,
2006
, “
Influence of Surface Roughness on the Specular Reflectance of Low Gloss Coatings Using Bidirectional Reflectance Measurements
,” Air Force Research Laboratory, Wright-Patterson Air Force Base, OH. Report No. ML-WP-TM-2007-4019.
11.
Shih
,
T.-S.
,
Wei
,
P.-S.
, and
Wu
,
C.-L.
,
2008
, “
Effect of Abrasives on the Glossiness and Reflectance of Anodized Aluminum Alloys
,”
J. Mater. Sci.
,
43
(
6
), pp.
1851
1858
.
12.
Deinhammer
,
C.
, and
Brandner
,
M.
,
2012
, “
Advanced Gloss Sensing for Robotic Applications
,”
Proc. SPIE
8495
, p. 84950T.
13.
Fernandez-Oliveras
,
A.
,
Costa
,
M. F. M.
,
Yebra
,
A.
,
Rubino
,
M.
, and
Perez
,
M. M.
,
2013
, “
Gloss Measurements and Rugometric Inspection in Dental Biomaterials
,”
Proc. SPIE
8785
, pp.
8785E01
8785E010
.
14.
Ward
,
G.
, and
Nussinovitch
,
A.
,
1996
, “
Gloss Properties and Surface Morphology Relationships of Fruits
,”
J. Food Sci.
,
61
(
5
), pp.
973
977
.
15.
Briones
,
V.
,
Aguilera
,
J. M.
, and
Brown
,
C.
,
2006
, “
Effect of Surface Topography on Color and Gloss of Chocolate Samples
,”
J. Food Eng.
,
77
(
4
), pp.
776
783
.
16.
Obein
,
G.
,
Knoblauch
,
K.
, and
Vienot
,
F.
,
2004
, “
Difference Scaling of Gloss: Nonlinearity, Binocularity, and Constancy
,”
J. Vision
,
4
(9), pp.
711
720
.
17.
Trezza
,
T. A.
, and
Krochta
,
J. M.
,
2001
, “
Specular Reflection, Gloss, Roughness and Surface Heterogeneity of Biopolymer Coatings
,”
J. Appl. Polym. Sci.
,
79
(
12
), pp.
2221
2229
.
18.
Tipler
,
P. A.
,
1991
,
Physics: For Scientists and Engineers
,
Worth Publishers
,
New York
.
19.
Hunt
,
F.
,
Galler
,
M.
, and
Martin
,
J.
,
1998
, “
Microstructure of Weathered Paint and Its Relation to Gloss Loss: Computer Simulation and Modeling
,”
J. Coat. Technol.
,
70
(
880
), pp.
45
53
.
20.
Goossens
,
V.
,
Stijns
,
E.
,
van Gils
,
S.
,
Finsy
,
R.
, and
Terryn
,
H.
,
2009
, “
Measuring and Modelling the Appearance of Coated Steel Surfaces
,”
Proc. SPIE
7390
, 73900M.
21.
Hunter
,
R. S.
,
1937
, “
Methods of Determining Gloss
,”
J. Res. Natl. Bur. Stand.
,
18
(
1
), pp.
19
39
.
22.
Adelson
,
E. H.
,
2001
, “
On Seeing Stuff: The Perception of Materials by Humans and Machines
,”
Proc. SPIE
4299
, pp.
1
12
.
23.
Böhm
,
J.
,
Bianchi
,
D.
,
Jech
,
M.
,
Brodman
,
R.
, and
Vellekoop
,
M.
,
2008
, “
Detection of NM-Scale Scratches on High Gloss Metal Sheets by a Light Scattering Method
,”
ASME
Paper No. IJTC2008-71281.
24.
Sato
,
M.
,
Shimamoto
,
R.
, and
Mizoguchi
,
M.
,
2012
, “
3-D Image Measurement System for Small Machine Parts With Glossy Metal Surfaces
,”
ASME
Paper No. ISFA2012-7184.
25.
ASTM, 2014, D523-14-Standard Test Method for Specular Gloss, BOS Vol 06.01, ASTM International.
26.
Peiponen
,
K.-E.
,
Myllylä
,
R.
, and
Priezzhev
,
A. V.
,
2009
,
Optical Measurement Techniques
,
Springer
,
Berlin
.
27.
Li
,
H.
,
Foo
,
S. C.
,
Torrancei
,
K. E.
, and
Westin
,
S. H.
,
2005
, “
Automated Three-Axis Gonioreflectometer for Computer Graphics Applications
,”
Proc. SPIE
5878
, pp.
5878
5829
.
28.
SMS,
1994
,
A New Light on Quality, Interpreting Light Scatter Measurements
,
Schmitt Measurement Systems
, pp.
1
19
.
29.
Phong
,
B. T.
,
1975
, “
Illumination for Computer Generated Pictures
,”
Commun. ACM
,
18
(
6
), pp.
311
317
.
30.
Blinn
,
J. F.
,
1977
, “
Models of Light Reflection for Computer Synthesized Pictures
,”
SIGGRAPH Comput. Graphics
,
11
(
2
), pp.
192
198
.
31.
Whitted
,
T.
,
1980
, “
An Improved Illumination Model for Shaded Display
,”
Commun. ACM
,
23
(
6
), pp.
343
349
.
32.
Torrance
,
K. E.
, and
Sparrow
,
E. M.
,
1967
, “
Theory for Off-Specular Reflection From Roughened Surfaces
,”
J. Opt. Soc. Am.
,
57
(
9
), pp.
1105
1112
.
33.
Cook
,
R. L.
, and
Torrance
,
K. E.
,
1982
, “
A Reflectance Model for Computer Graphics
,”
ACM Trans. Graphics
,
1
(
1
), pp.
7
24
.
34.
Poulin
,
P.
, and
Fournier
,
A.
,
1990
, “
A Model for Anisotropic Reflection
,”
SIGGRAPH Comput. Graphics
,
24
(
4
), pp.
273
282
.
35.
Kurt
,
M.
, and
Edwards
,
D.
,
2009
, “
A Survey of BRDF Models for Computer Graphics
,”
SIGGRAPH Comput. Graphics
,
43
(
2
), pp.
1
7
.
36.
Matusik
,
W.
,
Pfister
,
H.
,
Brand
,
M.
, and
McMillan
,
L.
,
2003
, “
A Data-Driven Reflectance Model
,”
ACM Trans. Graphics
,
22
(
3
), pp.
759
769
.
37.
Ngan
,
A.
,
Durand
,
F.
, and
Matusik
,
W.
,
2005
, “
Experimental Analysis of BRDF Models
,”
Eurographics Symposium on Rendering
, K. B. A. P. Dutre, ed., The Eurographics Association, 2005, pp. 117–126.
38.
Klocke
,
F.
,
2009
,
Manufacturing Processes 2–Grinding, Honing, Lapping
,
Springer
,
Berlin, Heidelberg
.
39.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2007
,
Handbook of Machining With Grinding Wheels
,
Taylor & Francis Group
.
40.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
41
(
2
), pp.
677
688
.
41.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H. W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
,
Uhlmann
,
E.
,
Weinert
,
K.
, and
Wittmann
,
M.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
667
696
.
42.
Terry
,
A. J.
, and
Brown
,
C. A.
,
1997
, “
A Comparison of Topographic Characterization Parameters in Grinding
,”
CIRP Ann. Manuf. Technol.
,
46
(
1
), pp.
497
500
.
43.
Brinksmeier
,
E.
,
Lucca
,
D. A.
, and
Walter
,
A.
,
2004
, “
Chemical Aspects of Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
685
699
.
44.
Davim
,
J. P.
,
2010
,
Surface Integrity in Machining
,
Springer
,
London
.
45.
Brinksmeier
,
E.
, and
Walter
,
A.
,
2000
, “
Generation of Reaction Layers on Machined Surfaces
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
435
438
.
You do not currently have access to this content.