Nickel-based alloys are those of materials that are maintaining their strength at high temperature. This feature makes these alloys a suitable candidate for power generation industry. However, high wear rate and tooling cost are known as the challenges in machining Ni-based alloys. The high wear rate causes a rapid failure of the tool, and therefore, fewer data will be available for model development. In addition, variations in material properties and hardness, residual stress, tool runout, and tolerances are some uncontrollable effects adding uncertainties to the currently developed models. To address these challenges, a probabilistic Bayesian approach using Markov Chain Monte Carlo (MCMC) method has been used in this work. The MCMC method is a powerful tool for parameter inference and quantification of embedded uncertainties of models. It is shown that by adding a prior probability to the observation probability, fewer experiments are required for inference. This is specifically useful in model development for difficult-to-machine alloys where high wear rate lowers the cardinality of the dataset. The combined Gibbs–Metropolis algorithm as a subset of MCMC method has been used in this work to quantify the uncertainty of the unknown parameters in a mechanistic tool wear model for end-milling of a difficult-to-machine Ni-based alloy. Maximum of 18% error and average error of 11% in the results show a good potential of this modeling in prediction of parameters in the presence of uncertainties when limited experiments are available.

References

References
1.
Vallejo
,
A. G.
, Jr.
,
Nolazco-Flores
,
J. A.
,
Morales-Menéndez
,
R.
,
Sucar
,
L. E.
, and
Rodríguez
,
C. A.
,
2005
, “
Tool-Wear Monitoring Based on Continuous Hidden Markov Models
,”
Progress in Pattern Recognition, Image Analysis and Applications
,
Springer
,
Berlin, Heidelberg
, pp.
880
890
.
2.
Yen
,
Y.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
3.
Mehta
,
P.
,
Kuttolamadom
,
M.
, and
Mears
,
L.
,
2012
, “
Machining Process Power Monitoring: Bayesian Update of Machining Power Model
,”
ASME
Paper No. MSEC2012-7277.
4.
Mehta
,
P.
, and
Mears
,
L.
,
2013
, “
Model Learning in a Multistage Machining Process: Online Identification of Force Coefficients and Model Use in the Manufacturing Enterprise
,”
ASME
Paper No. MSEC2013-1144.
5.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating—Part 1: Milling Tool Life Model Using a Discrete Grid Method
,”
Precis. Eng.
,
38
(
1
), pp.
9
17
.
6.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating—Part 2: Turning Tool Life Using a Markov Chain Monte Carlo Approach
,”
Precis. Eng.
,
38
(
1
), pp.
18
27
.
7.
Daum
,
F.
,
2005
, “
Nonlinear Filters: Beyond the Kalman Filter
,”
IEEE Aerosp. Electron. Syst. Mag.
,
20
(
8
), pp.
57
69
.
8.
Doucet
,
A.
,
De Freitas
,
N.
, and
Gordon
,
N.
,
2001
,
An Introduction to Sequential Monte Carlo Methods
,
Springer
,
New York
.
9.
Long
,
Y.
,
Huang
,
Y.
, and
Sun
,
X.
,
2010
, “
Combined Effects of Flank and Crater Wear on Cutting Force Modeling in Orthogonal Machining—Part II: Bayesian Approach-Based Model Validation
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
24
42
.
10.
Henderson
,
A.
,
2012
, “
Updated Force Model for Milling Nickel-Based Superalloys
,”
Ph.D. dissertation
, Clemson University, Clemson, SC.
11.
Akhavan Niaki
,
F.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2015
, “
Stochastic Tool Wear Assessment in Milling Difficult to Machine Alloys
,”
Int. J. Mechatron. Manuf. Syst.
,
8
(
3–4
), pp.
134
159
.
12.
Dey
,
S.
, and
Stori
,
J.
,
2005
, “
A Bayesian Network Approach to Root Cause Diagnosis of Process Variations
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
75
91
.
13.
Rabiner
,
L.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.
14.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
,
2001
, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1363
1384
.
15.
Zhu
,
K.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
,
2009
, “
Multi-Category Micro-Milling Tool Wear Monitoring With Continuous Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
23
(
2
), pp.
547
560
.
16.
Zhu
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Tool Wear Characteristics in Machining of Nickel-Based Superalloys
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
60
77
.
17.
Akhtar
,
W.
,
Sun
,
J.
,
Sun
,
P.
,
Chen
,
W.
, and
Saleem
,
Z.
,
2014
, “
Tool Wear Mechanisms in the Machining of Nickel Based Super-Alloys: A Review
,”
Front. Mech. Eng.
,
9
(
2
), pp.
106
119
.
18.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
19.
Gilks
,
W. R.
,
Richardson
,
S.
, and
Spiegelhalter
,
D.
,
1995
,
Markov Chain Monte Carlo in Practice
,
Chapman & Hall
,
London
.
20.
Hoff
,
P. D.
,
2009
,
A First Course in Bayesian Statistical Methods
,
Springer
,
New York
.
21.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
(
1–2
), pp.
5
43
.
22.
Lynch
,
S. M.
,
2007
,
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists
,
Springer
,
New York
.
23.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
1999
, “
Adaptive Proposal Distribution for Random Walk Metropolis Algorithm
,”
Comput. Stat.
,
14
(
3
), pp.
375
396
.
24.
Rosenthal
,
J. S.
,
2011
, “
Optimal Proposal Distributions and Adaptive MCMC
,”
Handbook of Markov Chain Monte Carlo
,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp.
93
112
.
25.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
International Statistical Institute, The Hague
,
The Netherlands
, pp.
223
242
.
26.
Solonen
,
A.
,
2006
, “
Monte Carlo Methods in Parameter Estimation of Nonlinear Model
,” Master's thesis, Lappeenranta University of Technology, Lappeenranta, Finland.
27.
Mira
,
A.
,
2001
, “
On Metropolis-Hastings Algorithms With Delayed Rejection
,”
Metron
,
59
(
3–4
), pp.
231
241
.
28.
Altintas
,
Y.
, and
Yellowley
,
I.
,
1989
, “
In-Process Detection of Tool Failure in Milling Using Cutting Force Models
,”
ASME J. Manuf. Sci. Eng.
,
111
(
2
), pp.
149
157
.
29.
Shao
,
H.
,
Wang
,
H. L.
, and
Zhao
,
X. M.
,
2004
, “
A Cutting Power Model for Tool Wear Monitoring in Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1503
1509
.
30.
Choudhury
,
S.
, and
Rath
,
S.
,
2000
, “
In-Process Tool Wear Estimation in Milling Using Cutting Force Model
,”
J. Mater. Process. Technol.
,
99
(
1
), pp.
113
119
.
31.
Waldorf
,
D. J.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1992
, “
Automatic Recognition of Tool Wear on a Face Mill Using a Mechanistic Modeling Approach
,”
Wear
,
157
(
2
), pp.
305
323
.
32.
Sandvik
,
C.
,
2006
, “
Steel Milling Stars, GC4240 and GC1030, C-1140, A Pair of Grades That Won't Crack Under Pressure
,” Sandvik Coromant, Sandviken, Sweden.
33.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
You do not currently have access to this content.