An improved “mass–spring” model to analyze the entire short-circuiting transfer (SCT) dynamic process based on the association between the arcing and circuiting phases has been proposed. This paper analyses the basic characteristics of displacement of the droplet mass center and oscillation velocity of droplet variation. In addition, the effect of welding current on the short-circuiting frequency is studied. The results of the simulations conducted agree well with the experimental results obtained. An analysis method for optimal welding current during SCT is also proposed, and the droplet transport stability is discussed. Simulation results demonstrate that the relative displacement of the droplet mass center and the average equivalent diameter of the transfer droplets are at a minimum under the optimal welding current condition. This research provides a reference for further simulation of the SCT process and useful guidance for the selection of optimum technics parameters.

References

References
1.
Lancaster
,
J. F.
,
1986
,
The Physics of Welding
,
Pergamon Press
,
New York
.
2.
Kim
,
Y. S.
, and
Eagar
,
T. W.
,
1993
, “
Analysis of Metal Transfer in Gas Metal Arc Welding
,”
Weld. J.
,
76
, pp.
269s
278s
.
3.
Ding
,
X.
,
Li
,
H.
,
Yang
,
L.
, and
Gao
,
Y.
,
2013
, “
Simulation of Metal Transfer in GMAW Based on FLUENT
,”
Acta Metall. Sin. (Engl. Lett.)
,
26
(
3
), pp.
265
270
.
4.
Hertel
,
M.
,
Fussel
,
U.
, and
Schnick
,
M.
,
2014
, “
Numerical Simulation of the Plasma-MIG Process-Interactions of the Arcs, Droplet Detachment and Weld Pool Formation
,”
Weld. World
,
58
(
1
), pp.
85
92
.
5.
Wu
,
C.
,
Chen
,
M.
, and
Li
,
S.
,
2004
, “
Analysis of Excited Droplet Oscillation and Detachment in Active Control of Metal Transfer
,”
Comput. Mater. Sci.
,
31
(
1–2
), pp.
147
154
.
6.
Chen
,
M.
,
Wu
,
C.
, and
Li
,
S.
,
2007
, “
Analysis of Active Control of Metal Transfer in Modified Pulsed GMAW
,”
Sci. Technol. Weld. J.
,
12
(
1
), pp.
10
14
.
7.
Ersoy
,
U.
,
Kannatey-Asibu
,
E.
, and
Hu
,
S.
,
2008
, “
Analytical Modeling of Metal Transfer for GMAW in the Globular Mode
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061009
.
8.
Tipi
,
A. D.
,
2010
, “
The Study on the Drop Detachment for Automatic Pipeline GMAW System: Short-Circuit Mode
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1–4
), pp.
149
161
.
9.
Wu
,
C.
,
2008
,
Welding Thermal Processes and Weld Pool Behaviors
,
China Machine Press
,
Beijing
, Chap. 7.
10.
Choi
,
J. H.
,
Lee
,
J.
, and
Yoo
,
C. D.
,
2001
, “
Dynamic Force Balance Model for Metal Transfer Analysis in Arc Welding
,”
J. Phys. D: Appl. Phys.
,
34
(
17
), pp.
2658
2664
.
11.
Choi
,
S. K.
,
Ko
,
S. H.
,
Yoo
,
C. D.
, and
Kim
,
Y. S.
,
1998
, “
Dynamic Simulation of Metal Transfer in GMAW—Part 2: Short-Circuit Transfer Mode
,”
Weld. J.
,
77
(
1
), pp.
45
51
.
12.
Choi.
,
J. H.
,
Lee
,
J. Y.
, and
Yoo
,
C. D.
,
2001
, “
Simulation of Dynamic Behavior in a GMAW System
,”
Weld. J.
,
80
(
10
), pp.
239
245
.
13.
Watkins
,
A. D.
,
Smartt
,
H. B.
, and
Johnson
,
J. A.
,
1992
, “
A Dynamic Model of Droplet Growth and Detachment in GMAW
,”
3rd International Conference on Trends in Welding Science and Technology
, Hemisphere, Gatlinburg, TN, pp.
993
997
.
14.
Simpson
,
S. W.
, and
Zhu
,
P. Y.
,
1995
, “
Formation of Molten Droplets at a Consumable Anode in an Electric Welding Arc
,”
J. Phys. D Appl. Phys.
,
28
(
8
), pp.
1594
1600
.
15.
Hirata
,
Y.
,
Onda
,
M.
,
Osamura
,
T.
, and
Ohji
,
T.
,
1998
, “
Breakup Time of Liquid Metal Bridge in Short-Circuiting Transfer Process of GMA Welding
,”
The 51st Annual Assembly International Institute of Welding
, Hemisphere, Hamburg, Germany, Paper No. 212-936-98.
16.
Terasaki
,
H.
, and
Simpson
,
S. W.
,
2005
, “
Modeling of the GMAW System in Free Flight and Short Circuiting Transfer
,”
Sci. Technol. Weld. J.
,
10
(
1
), pp.
120
124
.
17.
Innocenzo
,
A. D.
, and
Renna
,
L.
,
1996
, “
Dripping Faucet
,”
Int. J. Theor. Phys.
,
35
(
5
), pp.
941
973
.
18.
Julin
,
S.
,
1979
,
Fluid Flow Phenomena in Metals Processing
,
Academic Press
,
New York
.
19.
Jones
,
L. A.
,
Eagar
,
T. W.
, and
Lang
,
J. H.
,
1998
, “
A Dynamic Model of Drops Detaching From a Gas Metal Arc Welding Electrode
,”
J. Phys. D: Appl. Phys.
,
31
(
1
), pp.
107
123
.
20.
Kiyono
,
K.
, and
Fuchikami
,
N.
,
2000
, “
Taming a Chaotic Dripping Faucet Via a Global Bifurcation
,”
J. Phys. Soc. Jpn.
,
71
(
1
), pp.
49
50
.
21.
Tufaile
,
A.
,
Pinto
,
R.
,
Gonçalves
,
W.
, and
Sartorelli
,
J.
,
1999
, “
Simulations in a Dripping Faucet Experiment
,”
Phys. Lett. A
,
255
(
1
), pp.
58
64
.
22.
Yin
,
S. Y.
,
2012
,
GMAW Basic and Application
,
China Machine Press
,
Beijing
, Chap. 5.
23.
Cao
,
B.
,
Lv
,
X.
,
Zeng
,
M.
, and
Huang
,
S.
,
2007
, “
Analysis of Welding Conditions in Short-Circuiting Transition Based on Approximate Entropy
,”
Chin. J. Mech. Eng.
,
43
(
10
), pp.
50
54
.
24.
Lv
,
X.
,
Lin
,
J. P.
,
Cao
,
B.
,
Zeng
,
M.
, and
Huang
,
S.
,
2008
, “
Approximate Entropy Analysis of Current Signal in Different Transfer Modes of CO2/Arc Welding
,”
Hanjie Xuebao
,
29
(
7
), pp.
17
21
.
25.
Cao
,
B.
,
Lv
,
X.
,
Zeng
,
M.
, and
Huang
,
S.
,
2006
, “
Approximate Entropy Analysis of Current in Short-Circuiting Arc Welding
,”
Acta Phys. Sin. (China)
,
55
(
4
), pp.
1696
1705
.
26.
Zhu
,
Z.
,
Wu
,
W.
, and
Chen
,
Q.
,
2005
, “
Random Nature of Droplet Size and Its Origins in Short Circuiting CO2 Arc Welding
,”
Sci. Technol. Weld. J.
,
10
(
6
), pp.
636
642
.
27.
Simpson
,
S. W.
,
2009
, “
Metal Transfer Instability in Gas Metal Arc Welding
,”
Sci. Technol. Weld. J.
,
14
(
4
), pp.
262
273
.
28.
Lin
,
Q.
,
Li
,
X.
, and
Simpson
,
S. W.
,
2001
, “
Metal Transfer Measurements in Gas Metal Arc Welding
,”
J. Phys. D: Appl. Phys.
,
34
(
3
), pp.
347
353
.
You do not currently have access to this content.