Fewer-axis ultraprecision grinding has been recognized as an important means for manufacturing large complex optical mirrors. The research on grinding force is critical to obtaining a mirror with a high surface accuracy and a low subsurface damage. In this paper, a unified 3D geometric model of toric wheel–workpiece contact area and its boundaries are established based on the local geometric properties of the wheel and the workpiece at the grinding point (GP). Moreover, the discrete wheel deformation is calculated with linear superposition of force-induced deformations of single grit, resolving the difficulties of applying Hertz contact theory to irregular contact area. The new deformed wheel surface is then obtained by using the least squares method. Based on the force distribution within the contact area and the coupled relationship between grinding force and wheel deformation, the specific grinding energy and the final predicted grinding force are obtained iteratively. Finally, the proposed methods are validated through grinding experiments.

References

References
1.
Shore
,
P.
,
Cunningham
,
C.
,
DeBra
,
D.
,
Evans
,
C.
,
Hough
,
J.
,
Gilmozzi
,
R.
, and
Tonnellier
,
X.
,
2010
, “
Precision Engineering for Astronomy and Gravity Science
,”
CIRP Ann. Manuf. Technol.
,
59
(
2
), pp.
694
716
.
2.
Comley
,
P.
,
Morantz
,
P.
,
Shore
,
P.
, and
Tonnellier
,
X.
,
2011
, “
Grinding Metre Scale Mirror Segments for the E-ELT Ground Based Telescope
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
379
382
.
3.
Brinksmeier
,
E.
,
Mutlugünes
,
Y.
,
Klocke
,
F.
,
Aurich
,
J. C.
,
Shore
,
P.
, and
Ohmori
,
H.
,
2010
, “
Ultra-Precision Grinding
,”
CIRP Ann. Manuf. Technol.
,
59
(
2
), pp.
652
671
.
4.
Denkena
,
B.
,
Turger
,
A.
,
Behrens
,
L.
, and
Krawczyk
,
T.
,
2012
, “
Five-Axis-Grinding With Toric Tools: A Status Review
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
054001
.
5.
Kuriyagawa
,
T.
,
Zahmaty
,
M. S. S.
, and
Syoji
,
K.
,
1996
, “
A New Grinding Method for Aspheric Ceramic Mirrors
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
387
392
.
6.
Shore
,
P.
,
Luo
,
X.
,
Jin
,
T.
,
Tonnellier
,
X.
,
Morantz
,
P.
,
Stephenson
,
D.
, and
Read
,
R.
,
2005
, “
Grinding Mode of the “BoX” Ultra Precision Free-Form Grinder
,”
20th Annual
ASPE
Meeting, Norfolk, VA, pp.
114
117
.
7.
Tonnellier
,
X.
,
2009
, “
Precision Grinding for Rapid Manufacturing of Large Optics
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.
8.
Jiang
,
Z.
, and
Yin
,
Y.
,
2013
, “
Geometrical Principium of Fewer-Axis Grinding for Large Complex Optical Mirrors
,”
Sci. China Technol. Sci.
,
56
(
7
), pp.
1667
1677
.
9.
Jiang
,
Z.
,
Yin
,
Y.
, and
Chen
,
X.
,
2015
, “
Geometric Error Modeling, Separation, and Compensation of Tilted Toric Wheel in Fewer-Axis Grinding for Large Complex Optical Mirrors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031003
.
10.
Denkena
,
B.
,
de Leon
,
L.
,
Turger
,
A.
, and
Behrens
,
L.
,
2010
, “
Prediction of Contact Conditions and Theoretical Roughness in Manufacturing of Complex Implants by Toric Grinding Tools
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
630
636
.
11.
Brown
,
R. H.
,
Saito
,
K.
, and
Shaw
,
M. C.
,
1971
, “
Local Elastic Deflections in Grinding
,”
Ann. CIRP
,
19
(
1
), pp.
105
113
.
12.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2012
, “
Predictive Modeling of Undeformed Chip Thickness in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
59
68
.
13.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2013
, “
Predictive Modeling of Force and Power Based on a New Analytical Undeformed Chip Thickness Model in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
68
78
.
14.
Linke
,
B. S.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
060801
.
15.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X.
,
Yang
,
J. G.
,
Chiang
,
K. N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
16.
Adibi
,
H.
,
Rezaei
,
S. M.
, and
Sarhan
,
A. A.
,
2014
, “
Grinding Wheel Loading Evaluation Using Digital Image Processing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011012
.
17.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
41
(
2
), pp.
677
688
.
18.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H. W.
,
Klocke
,
F.
, and
Wittmann
,
M.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
667
696
.
19.
Li
,
S.
,
Du
,
S.
,
Tang
,
A.
,
Landers
,
R. G.
, and
Zhang
,
Y.
,
2014
, “
Force Modeling and Control of SiC Monocrystal Wafer Processing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061003
.
20.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D. C. H.
, and
Han
,
Z.
,
2003
, “
Adaptive Iso-Planar Tool Path Generation for Machining of Free-Form Surfaces
,”
Comput. Aided Des.
,
35
(
2
), pp.
141
153
.
21.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
CIRP Ann. Manuf. Technol.
,
45
(
2
), pp.
569
580
.
22.
Wang
,
B.
,
Liu
,
Z.
,
Su
,
G.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials With Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
23.
Cheng
,
X.
,
Wei
,
X. T.
,
Yang
,
X. H.
, and
Guo
,
Y. B.
,
2014
, “
Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051013
.
24.
Mladenovic
,
G.
,
Bojanic
,
P.
,
Tanovic
,
L.
, and
Klimenko
,
S.
,
2015
, “
Experimental Investigation of Microcutting Mechanisms in Oxide Ceramic CM332 Grinding
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034502
.
25.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
,
Industrial Press
,
New York
, Chap. 3.
26.
Chang
,
H. C.
, and
Wang
,
J. J. J.
,
2008
, “
A Stochastic Grinding Force Model Considering Random Grit Distribution
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1335
1344
.
You do not currently have access to this content.