In recent years, higher requirements on vehicle performance and emission have been posing great challenges to lightweighting of vehicle bodies. Mixed use of lightweight materials, e.g., aluminum alloys and magnesium alloys, is one of the essential methods for weight reduction. However, the joining of dissimilar materials brings about new challenges. Self-piercing riveting (SPR) is a feasible process to mechanically join dissimilar materials, however, when magnesium alloy sheet is put on the bottom layer, cracks occur inevitably due to the low ductility of the magnesium alloy. Friction self-piercing riveting (F-SPR) process is a newly proposed technology, which combines the SPR with friction stir spot welding (FSSW) and has been validated being capable of eliminating cracks and improving joint performance. However, in the F-SPR process, the generation of the transient friction heat and its effect on interaction between the rivet and the two sheets are still unclear. In this paper, a three-dimensional thermomechanical-coupled finite-element (FE) model of F-SPR process was developed using an ls-dyna code. Temperature-dependent material parameters were utilized to calculate the material yield and flow in the joint formation. Preset crack failure method was used to model the material failure of the top sheet. The calculated joint geometry exhibited a good agreement with the experimental measurement. Based on the validated model, the transient formation of F-SPR mechanical joint, stress distribution, and temperature evolution were further investigated.

References

References
1.
Chowdhury
,
S. H.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Cao
,
X.
, and
Wanjara
,
P.
,
2012
, “
Lap Shear Strength and Fatigue Life of Friction Stir Spot Welded AZ31 Magnesium and 5754 Aluminum Alloys
,”
Mater. Sci. Eng. A
,
556
, pp.
500
509
.
2.
Regev
,
M.
,
Spigarelli
,
S.
, and
Cabibbo
,
M.
,
2015
, “
Microstructure Stability During Creep of Friction Stir Welded AZ31B Magnesium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051021
.
3.
Hansen
,
S. R.
,
Vivek
,
A.
, and
Daehn
,
G. S.
,
2015
, “
Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051013
.
4.
Min
,
J.
,
Li
,
J.
,
Carlson
,
B. E.
,
Li
,
Y.
,
Quinn
,
J. F.
,
Lin
,
J.
, and
Wang
,
W.
,
2015
, “
Friction Stir Blind Riveting for Joining Dissimilar Cast Mg AM60 and Al Alloy Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051022
.
5.
Li
,
Y. B.
,
Li
,
Y. T.
,
Lou
,
M.
, and
Lin
,
Z. Q.
,
2012
, “
Lightweighting of Car Body and Its Challenges to Joining Technologies
,”
J. Mech. Eng.
,
48
(
18
), pp.
44
54
.
6.
Liu
,
L. M.
,
Ren
,
D. X.
, and
Liu
,
F.
,
2014
, “
A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys
,”
Materials
,
7
(
5
), pp.
3735
3757
.
7.
Scherm
,
F.
,
Bezold
,
J.
, and
Glatzel
,
U.
,
2012
, “
Laser Welding of Mg Alloy MgAl3Zn1 (AZ31) to Al Alloy AlMg3 (AA5754) Using ZnAl Filler Material
,”
Sci. Technol. Weld. Joining
,
17
(
5
), pp.
364
367
.
8.
Zhang
,
H. T.
, and
Song
,
J. Q.
,
2011
, “
Microstructural Evolution of Aluminum/Magnesium Lap Joints Welded Using MIG Process With Zinc Foil as an Interlayer
,”
Mater. Lett.
,
65
(
21–22
), pp.
3292
3294
.
9.
Zhang
,
Y.
,
Luo
,
Z.
,
Li
,
Y.
,
Liu
,
Z. M.
, and
Huang
,
Z. Y.
,
2015
, “
Microstructure Characterization and Tensile Properties of Mg/Al Dissimilar Joints Manufactured by Thermo-Compensated Resistance Spot Welding With Zn Interlayer
,”
Mater. Des.
,
75
(
15
), pp.
166
173
.
10.
Liyanage
,
T.
,
Kilbourne
,
J.
,
Gerlich
,
A. P.
, and
North
,
T. H.
,
2009
, “
Joint Formation in Dissimilar Al Alloy/Steel and Mg Alloy/Steel Friction Stir Spot Welds
,”
Sci. Technol. Weld. Joining
,
14
(
6
), pp.
500
508
.
11.
Sato
,
Y. S.
,
Shiota
,
A.
,
Kokawa
,
H.
,
Okamoto
,
K.
,
Yang
,
Q.
, and
Kim
,
C.
,
2010
, “
Effect of Interfacial Microstructure on Lap Shear Strength of Friction Stir Spot Weld of Aluminium Alloy to Magnesium Alloy
,”
Sci. Technol. Weld. Joining
,
15
(
4
), pp.
319
324
.
12.
Gerlich
,
A.
,
Su
,
P.
, and
North
,
T. H.
,
2005
, “
Peak Temperatures and Microstructures in Aluminium and Magnesium Alloy Friction Stir Spot Welds
,”
Sci. Technol. Weld. Joining
,
10
(
6
), pp.
647
652
.
13.
Suhuddin
,
U. F. H.
,
Fischer
,
V.
, and
dos Santos
,
J. F.
,
2013
, “
The Thermal Cycle During the Dissimilar Friction Spot Welding of Aluminum and Magnesium Alloy
,”
Scr. Mater.
,
68
(
1
), pp.
87
90
.
14.
Mori
,
K.-I.
,
Bay
,
N.
,
Fratini
,
L.
,
Micari
,
F.
, and
Tekkaya
,
A. E.
,
2013
, “
Joining by Plastic Deformation
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
673
694
.
15.
Han
,
L.
, and
Chrysanthou
,
A.
,
2008
, “
Evaluation of Quality and Behaviour of Self-Piercing Riveted Aluminium to High Strength Low Alloy Sheets With Different Surface Coatings
,”
Mater. Des.
,
29
(
2
), pp.
458
468
.
16.
Abe
,
Y.
,
Kato
,
T.
, and
Mori
,
K.
,
2009
, “
Self-Piercing Riveting of High Tensile Strength Steel and Aluminium Alloy Sheets Using Conventional Rivet and Die
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3914
3922
.
17.
Luo
,
A. A.
,
Lee
,
T. M.
, and
Carter
,
J. T.
,
2011
, “
Self-Pierce Riveting of Magnesium to Aluminum Alloys
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
158
165
.
18.
Wang
,
J. W.
,
Liu
,
Z. X.
,
Shang
,
Y.
,
Liu
,
A. L.
,
Wang
,
M. X.
,
Sun
,
R. N.
, and
Wang
,
P.-C.
,
2011
, “
Self-Piercing Riveting of Wrought Magnesium AZ31 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031009
.
19.
Easton
,
M.
,
Beer
,
A.
,
Barnett
,
M.
,
Davies
,
C.
,
Dunlop
,
G.
,
Durandet
,
Y.
,
Blacket
,
S.
,
Hilditch
,
T.
, and
Beggs
,
P.
,
2008
, “
Magnesium Alloy Applications in Automotive Structures
,”
JOM
,
60
(
11
), pp.
57
62
.
20.
Durandet
,
Y.
,
Deam
,
R.
,
Beer
,
A.
,
Song
,
W.
, and
Blacket
,
S.
,
2010
, “
Laser Assisted Self-Pierce Riveting of AZ31 Magnesium Alloy Strips
,”
Mater. Des.
,
31
, pp.
S13
S16
.
21.
Li
,
Y. B.
,
Wei
,
Z. Y.
,
Wang
,
Z. Z.
, and
Li
,
Y. T.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
22.
Awang
,
M.
,
Mucino
,
V. H.
,
Feng
,
Z.
, and
David
,
S. A.
,
2006
, “
Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)
,”
SAE
Technical Paper No. 2005-01-1251.
23.
Gao
,
Z.
,
Niu
,
J. T.
,
Krumphals
,
F.
,
Enzinger
,
N.
,
Mitsche
,
S.
, and
Sommitsch
,
C.
,
2013
, “
FE Modelling of Microstructure Evolution During Friction Stir Spot Welding in AA6082-T6
,”
Weld. World
,
57
(
6
), pp.
895
902
.
24.
Bouchard
,
P. O.
,
Laurent
,
T.
, and
Tollier
,
L.
,
2008
, “
Numerical Modeling of Self-Pierce Riveting—From Riveting Process Modeling Down to Structural Analysis
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
290
300
.
25.
Mori
,
K.
,
Abe
,
Y.
, and
Kato
,
T.
,
2007
, “
Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets
,”
Proc. AIP Conf.
,
908
, pp.
197
202
.
26.
Porcaro
,
R.
,
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Aalberg
,
A.
,
2006
, “
Self-Piercing Riveting Process: An Experimental and Numerical Investigation
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
10
20
.
27.
Hallquist
,
J.
,
2014
,
LS-DYNA
,
Livermore Software Technology Corporation
,
Livermore, CA
.
28.
Wu
,
C. T.
,
Hu
,
W.
,
Wang
,
H. P.
, and
Lu
,
H. S.
,
2014
, “
An Adaptive Meshfree Galerkin Method for the Three-Dimensional Thermo-Mechanical Flow Simulation of Friction Stir Welding Process
,”
13th International LS-DYNA Users Conference
, Session: Fluid Structure Interaction, pp.
1
20
.
29.
Ma
,
Y.
,
Lou
,
M.
,
Yang
,
Z.
, and
Li
,
Y.
,
2015
, “
Effect of Rivet Hardness and Geometrical Features on Friction Self-Piercing Riveted Joint Quality
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
054501
.
30.
Zhang
,
C.
,
Ma
,
G.
,
Nie
,
J.
, and
Ye
,
J.
,
2015
, “
Numerical Simulation of AZ31B Magnesium Alloy in DE-GMAW Welding Process
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5
), pp.
1259
1264
.
31.
Busby
,
J. T.
,
Hash
,
M. C.
, and
Was
,
G. S.
,
2005
, “
The Relationship Between Hardness and Yield Stress in Irradiated Austenitic and Ferritic Steels
,”
J. Nucl. Mater.
,
336
(
2–3
), pp.
267
278
.
32.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2015
, “
Thermal Mechanical Modeling of the Plunge Stage During Friction-Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051017
.
33.
Buffa
,
G.
,
Campanile
,
G.
,
Fratini
,
L.
, and
Prisco
,
A.
,
2009
, “
Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Properties
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
19
26
.
34.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.
You do not currently have access to this content.