Five-axis milling with a ball-end cutter is commonly used to generate a good surface finish on complex parts, such as blades or impellers made of titanium alloy. The five-axis milling cutting process is not straight forward; local cutting conditions depend a lot on the geometrical configuration relating to lead and tilt angles. Furthermore, the surface quality is greatly affected by the cutting conditions that define the milling configuration. This study presents a geometrical model of five-axis milling in order to determine the effective cutting conditions, the milling mode, and the cutter location point. Subsequently, an analysis of surface topography is proposed by using the geometrical model, local criteria, and a principle component analysis of experimental data. The results show the effects of local parameters on the surface roughness, in relation to the lead and tilt angles.

References

References
1.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Int. Symp. Metall. Technol. Titanium Alloys
,
213
(
1–2
), pp.
103
114
.
2.
Corduan
,
N.
,
Himbert
,
T.
,
Poulachon
,
G.
,
Dessoly
,
M.
,
Lambertin
,
M.
,
Vigneau
,
J.
, and
Payoux
,
B.
,
2003
, “
Wear Mechanisms of New Tool Materials for Ti-6Al-4V High Performance Machining
,”
CIRP Ann. Manuf. Technol.
,
52
(
1
), pp.
73
76
.
3.
Kim
,
K.-K.
,
Kang
,
M.-C.
,
Kim
,
J.-S.
,
Jung
,
Y.-H.
, and
Kim
,
N.-K.
,
2002
, “
A Study on the Precision Machinability of Ball End Milling by Cutting Speed Optimization
,”
J. Mater. Process. Technol.
,
130–131
, pp.
357
362
.
4.
Fan
,
J.
,
2014
, “
Cutting Speed Modelling in Ball Nose Milling Applications
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1
), pp.
161
171
5.
Boujelbene
,
M.
,
Moisan
,
A.
,
Bouzid
,
W.
, and
Torbaty
,
S.
,
2007
, “
Variation Cutting Speed on the Five Axis Milling
,”
J. Achiev. Mater. Manuf. Eng.
,
21
(
2
), pp.
7
14
.
6.
Daymi
,
A.
,
Boujelbene
,
M.
,
Ben Amara
,
A.
, and
Linares
,
J. M.
,
2009
, “
Improvement of the Surface Quality of the Medical Prostheses in High Speed Milling
,”
Int. Rev. Mech. Eng.
,
3
(
5
), pp.
566
572
.
7.
Ozturk
,
B.
, and
Lazoglu
,
I.
,
2006
, “
Machining of Free-Form Surfaces. Part I: Analytical Chip Load
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
728
735
.
8.
Prat
,
D.
,
Fromentin
,
G.
,
Poulachon
,
G.
, and
Duc
,
E.
,
2012
, “
Experimental Analysis and Geometrical Modeling of Cutting Conditions Effect in 5 Axis Milling With Ti6Al4 V Alloy
,”
Procedia CIRP
,
1
, pp.
84
89
.
9.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
10.
Lin
,
R.-S.
, and
Koren
,
Y.
,
1996
, “
Efficient Tool-Path Planning for Machining Free-Form Surfaces
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
20
27
.
11.
Imani
,
B. M.
, and
Elbestawi
,
M. A.
,
2001
, “
Geometric Simulation of Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
177
184
.
12.
Bailey
,
T.
,
Elbestawi
,
M. A.
,
El-Wardany
,
T. I.
, and
Fitzpatrick
,
P.
,
2002
, “
Generic Simulation Approach for Multi-Axis Machining, Part 1: Modeling Methodology
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
624
633
.
13.
Bouzakis
,
K.-D.
,
Aichouh
,
P.
, and
Efstathiou
,
K.
,
2003
, “
Determination of the Chip Geometry, Cutting Force and Roughness in Free Form Surfaces Finishing Milling, With Ball End Tools
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
499
514
.
14.
Lavernhe
,
S.
,
Quinsat
,
Y.
, and
Lartigue
,
C.
,
2010
, “
Model for the Prediction of 3D Surface Topography in 5-Axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
51
(
9–12
), pp.
915
924
.
15.
Quinsat
,
Y.
,
Lavernhe
,
S.
, and
Lartigue
,
C.
,
2011
, “
Characterization of 3D Surface Topography in 5-Axis Milling
,”
Wear
,
271
(
3–4
), pp.
590
595
.
16.
Lavernhe
,
S.
,
Quinsat
,
Y.
,
Lartigue
,
C.
, and
Brown
,
C.
,
2014
, “
Realistic Simulation of Surface Defects in Five-Axis Milling Using the Measured Geometry of the Tool
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1
), pp.
393
401
.
17.
Liu
,
X.
,
Soshi
,
M.
,
Sahasrabudhe
,
A.
,
Yamazaki
,
K.
, and
Mori
,
M.
,
2006
, “
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
74
85
.
18.
Buj-Corral
,
I.
,
Vivancos-Calvet
,
J.
, and
Domínguez-Fernández
,
A.
,
2012
, “
Surface Topography in Ball-End Milling Processes as a Function of Feed per Tooth and Radial Depth of Cut
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
151
159
.
19.
Zeroudi
,
N.
, and
Fontaine
,
M.
,
2012
, “
Prediction of Machined Surface Geometry Based on Analytical Modeling of Ball-End Milling
,”
Procedia CIRP
,
1
, pp.
108
113
.
20.
Denkena
,
B.
,
Böß
,
V.
,
Nespor
,
D.
, and
Samp
,
A.
,
2011
, “
Kinematic and Stochastic Surface Topography of Machined TiAl6V4-Parts by Means of Ball Nose End Milling
,”
Procedia Eng.
,
19
, pp.
81
87
.
21.
Zhang
,
W.-H.
,
Tan
,
G.
,
Wan
,
M.
,
Gao
,
T.
, and
Bassir
,
D. H.
,
2008
, “
A New Algorithm for the Numerical Simulation of Machined Surface Topography in Multiaxis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011003
.
22.
Han
,
S. G.
, and
Zhao
,
J.
,
2010
, “
Effect of Tool Inclination Angle on Surface Quality in 5-Axis Ball-End Milling
,”
2009 International Conference Manufacturing Science and Engineering ICMSE 2009
, Vol.
97–101
, pp.
2080
2084
.
23.
Chen
,
X.
,
Zhao
,
J.
,
Dong
,
Y.
,
Han
,
S.
,
Li
,
A.
, and
Wang
,
D.
,
2013
, “
Effects of Inclination Angles on Geometrical Features of Machined Surface in Five-Axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1721
1733
.
You do not currently have access to this content.