Friction stir blind riveting (FSBR), taking the advantages of friction stir processing with blind riveting, is a new joining process for dissimilar materials. This work is the first to employ electron-backscattered diffraction (EBSD) techniques to examine the microstructural evolution in an aluminum alloy sheet (AA6111), which was frictionally penetrated by a rotating blind rivet. The purpose of this work was to develop a basis of microstructural understanding for subsequent investigations into thermal–mechanical modeling and/or mechanical behavior of the joint. Specifically, EBSD observations and microhardness results are identified and helped to characterize in the area close to the blind rivet; a stir zone (SZ), three thermomechanical-affected zones (TMAZs), as well as a heat-affected zone (HAZ). In the TMAZs, the microhardness decreased from above to below that of the base material as the distance to the rivet increased, and the HAZ was softer than the base metal. Fine (∼1 μm) and low aspect ratio grains were characterized in the SZ, and grain size increased as the distance to the rivet increased within the TMAZs. Nearly, no difference was observed in the grain structure between the HAZ and the base material.

References

References
1.
Cao
,
R.
,
Sun
,
J. H.
,
Chen
,
J. H.
, and
Wang
,
P. C.
,
2014
, “
Cold Metal Transfer Joining of Aluminum AA6061-T6-to-Galvanized Boron Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051015
.
2.
Brandal
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2015
, “
Biocompatibility and Corrosion Response of Laser Joined NiTi to Stainless Steel Wires
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031015
.
3.
Min
,
J. Y.
,
Li
,
J. J.
,
Carlson
,
B. E.
,
Li
,
Y. Q.
,
Quinn
,
J.
,
Lin
,
J. P.
, and
Wang
,
W. M.
,
2015
, “
Friction Stir Blind Riveting for Dissimilar Cast Mg AM60 and Al alloy Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051022
.
4.
Lathabai
,
S.
,
Tyagi
,
V.
,
Ritchie
,
D.
,
Kearney
,
T.
, and
Finnin
,
B.
,
2011
, “
Friction Stir Blind Riveting: A Novel Joining Process for Automotive Light Alloys
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
589
601
.
5.
Min
,
J. Y.
,
Li
,
J. J.
,
Li
,
Y. Q.
,
Carlson
,
B. E.
,
Lin
,
J. P.
, and
Wang
,
W. M.
,
2015
, “
Friction Stir Blind Riveting of Aluminum alloy sheets
,”
J. Mater. Process. Technol.
,
215
, pp.
20
29
.
6.
Zhang
,
C. Q.
,
Wang
,
X. J.
, and
Li
,
B. Q.
,
2011
, “
A Technological Study on Friction Stir Blind Rivet Jointing of AZ31B Magnesium Alloys and High-Strength DP600 Steel
,”
Adv. Mater. Res.
,
183–185
, pp.
1616
1620
.
7.
Li
,
Y. B.
,
Wei
,
Z. Y.
,
Wang
,
Z. Z.
, and
Li
,
Y. T.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
8.
Ma
,
Y.
,
Lou
,
M.
,
Yang
,
Z.
, and
Li
,
Y. B.
,
2015
, “
Effect of Rivet Hardness and Geometrical Features on Friction Self-Piercing Riveted Joint Quality
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
054501
.
9.
Gao
,
D.
,
Ersoy
,
U.
,
Stevenson
,
R.
, and
Wang
,
P. C.
,
2009
, “
A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061002
.
10.
Dong
,
P.
,
Sun
,
D.
,
Wang
,
B.
,
Zhang
,
Y.
, and
Li
,
H.
,
2014
, “
Microstructure, Microhardness and Corrosion Susceptibility of Friction Stir Welded AlMgSiCu Alloy
,”
Mater. Des.
,
54
, pp.
760
765
.
11.
Sato
,
Y. S.
,
Kokawa
,
H.
,
Enomoto
,
M.
, and
Jogan
,
S.
,
1999
, “
Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding
,”
Metall. Mater. Trans. A
,
30
(
9
), pp.
2429
2437
.
12.
Kumbhar
,
N. T.
,
Sahoo
,
S. K.
,
Samajdar
,
I.
,
Dey
,
G. K.
, and
Bhanumurthy
,
K.
,
2011
, “
Microstructure and Microtextural Studies of Friction Stir Welded Aluminium Alloy 5052
,”
Mater. Des.
,
32
(
3
), pp.
1657
1666
.
13.
Hu
,
Z. L.
,
Wang
,
X. S.
,
Pang
,
Q.
,
Huang
,
F.
,
Qin
,
X. P.
, and
Hua
,
L.
,
2015
, “
The Effect of Postprocessing on Tensile Property and Microstructure Evolution of Friction Stir Welding Aluminum Alloy Joint
,”
Mater. Charact.
,
99
, pp.
180
187
.
14.
Liu
,
G.
,
Murr
,
L. E.
,
Niou
,
C. S.
,
McClure
,
J. C.
, and
Vega
,
F. R.
,
1997
, “
Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum
,”
Scr. Mater.
,
37
(
3
), pp.
355
361
.
15.
Xu
,
W. F.
,
Liu
,
J. H.
,
Chen
,
D. L.
,
Luan
,
G. H.
, and
Yao
,
J. S.
,
2012
, “
Change of Microstructure and Cyclic Deformation Behavior Along the Thickness in a Friction-Stir-Welded Aluminum Alloy
,”
Scr. Mater.
,
66
(
1
), pp.
5
8
.
16.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R
,
50
(
1–2
), pp.
1
78
.
17.
Suhuddin
,
U. F. H. R.
,
Mironov
,
S.
,
Sato
,
Y. S.
, and
Kokawa
,
H.
,
2010
, “
Grain Structure and Texture Evolution During Friction Stir Welding of Thin 6016 Aluminum Alloy Sheets
,”
Mater. Sci. Eng. A
,
527
(
7–8
), pp.
1962
1969
.
18.
Min
,
J.
,
Li
,
Y.
,
Li
,
J.
,
Carlson
,
B. E.
, and
Lin
,
J.
,
2015
, “
Mechanics in Frictional Penetration With a Blind Rivet
,”
J. Mater. Process. Technol.
,
222
, pp.
268
279
.
19.
Scialpi
,
A.
,
Filippis
,
D. L. A. C.
, and
Cavaliere
,
P.
,
2007
, “
Influence of Shoulder Geometry on Microstructure and Mechanical Properties of Friction Stir Welded 6082 Aluminum Alloy
,”
Mater. Des.
,
28
(
4
), pp.
1124
1129
.
20.
Rodrigues
,
D. M.
,
Loureiro
,
A.
,
Leitao
,
C.
,
Leal
,
R. M.
,
Chaparro
,
B. M.
, and
Vilac
,
A. P.
,
2009
, “
Influence of Friction Stir Welding Parameters on the Microstructural and Mechanical Properties of AA 6016-T4 Thin Welds
,”
Mater. Des.
,
30
(
6
), pp.
1913
1921
.
21.
El-Danaf
,
E. A.
, and
El-Rayes
,
M. M.
,
2013
, “
Microstructure and Mechanical Properties of Friction Stir Welded 6082 AA in As-Welded and Postweld Heat Treated Conditions
,”
Mater. Des.
,
46
, pp.
561
572
.
You do not currently have access to this content.