Making concurrent decisions on assembly plans and supply chain configurations (SCCs) is a desirable strategy in today's competitive global market. Such concurrent decisions help reduce decision iterations for shortened lead time and lower the total cost for manufacturers and their supply chains. However, there lacks deep understanding of the interaction between assembly plans and SCCs, as well as methodologies for integrating them. In this paper, we consider an assembly planning problem that simultaneously decomposes an assembly product to modules and assigns the modules to suppliers. The joint decision is formulated as an optimization problem of finding the assembly decomposition and the corresponding supply chain network with the lowest total supply chain cost. We develop a coordinated decision-making method by integrating assembly AND/OR graphs with supply chain cost information. A dynamic programing (DP) based algorithm is developed to efficiently solve the combined optimization problem. Case studies demonstrate that the proposed method can find optimal solutions for the integrated decision-making problem efficiently and provide a tool to plan assemblies from the perspective of the total supply chain cost in the early stages of product development.

References

References
1.
Gunasekaran
,
A.
,
1998
, “
An Integrated Product Development-Quality Management System for Manufacturing
,”
TQM Mag.
,
10
(
2
), pp.
115
123
.
2.
Ro
,
Y. K.
,
Liker
,
J. K.
, and
Fixson
,
S. K.
,
2007
, “
Modularity as a Strategy for Supply Chain Coordination: The Case of U.S. Auto
,”
IEEE Trans. Eng. Manage.
,
54
(
1
), pp.
172
189
.
3.
Bourjault
,
A.
,
1984
, “
Contribution à une approche méthodologique de l'assemblage automatisé: élaboration automatique des séquences opératoires
,” Ph.D. thesis, Université de Franche-comté, Besançon, France.
4.
de Mello
,
L. S. H.
, and
Sanderson
,
A. C.
,
1990
, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
188
199
.
5.
Wolter
,
J. D.
,
1991
, “
A Combinatorial Analysis of Enumerative Data Structures for Assembly Planning
,”
IEEE
International Conference on Robotics and Automation
, Sacramento, CA, Apr. 9–11, pp.
611
618
.
6.
de Mello
,
L. S. H.
, and
Sanderson
,
A. C.
,
1991
, “
Representations of Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
211
227
.
7.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
,
Oxford, UK
, Chap. 1.
8.
De Mello
,
L. S. H.
, and
Sanderson
,
A. C.
,
1991
, “
A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
228
240
.
9.
Ong
,
N.
, and
Wong
,
Y.
,
1999
, “
Automatic Subassembly Detection From a Product Model for Disassembly Sequence Generation
,”
Int. J. Adv. Manuf. Technol.
,
15
(
6
), pp.
425
431
.
10.
Khosla
,
P. K.
, and
Mattikali
,
R.
,
1989
, “
Determining the Assembly Sequence From a 3D Model
,”
J. Mech. Work. Technol.
,
20
, pp.
153
162
.
11.
Gao
,
J.
,
Xiang
,
D.
, and
Duan
,
G.
,
2008
, “
Subassembly Identification Based on Grey Clustering
,”
Int. J. Prod. Res.
,
46
(
4
), pp.
1137
1161
.
12.
Lee
,
S.
,
1994
, “
Subassembly Identification and Evaluation for Assembly Planning
,”
IEEE Trans. Syst., Man Cybern.
,
24
(
3
), pp.
493
503
.
13.
Li
,
S.
,
Wang
,
H.
,
Hu
,
S. J.
,
Lin
,
Y.-T.
, and
Abell
,
J. A.
,
2011
, “
Automatic Generation of Assembly System Configuration With Equipment Selection for Automotive Battery Manufacturing
,”
J. Manuf. Syst.
,
30
(
4
), pp.
188
195
.
14.
Ko
,
J.
,
Nazarian
,
E.
,
Wang
,
H.
, and
Abell
,
J.
,
2013
, “
An Assembly Decomposition Model for Subassembly Planning Considering Imperfect Inspection to Reduce Assembly Defect Rates
,”
J. Manuf. Syst.
,
32
(
3
), pp.
412
416
.
15.
Fujimoto
,
H.
, and
Sebaaly
,
M.
,
2000
, “
A New Sequence Evolution Approach to Assembly Planning
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
198
205
.
16.
Xu
,
Z.
, and
Liang
,
M.
,
2005
, “
Concurrent Optimization of Product Module Selection and Assembly Line Configuration: A Multi-Objective Approach
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
875
884
.
17.
Oliver
,
R. K.
, and
Webber
,
M. D.
,
1982
, “
Supply-Chain Management: Logistics Catches Up With Strategy
,”
Outlook
,
5
(
1
), pp.
42
47
.
18.
Shapiro
,
J.
,
2006
,
Modeling the Supply Chain
,
Cengage Learning
, pp.
6
7
.
19.
Graves
,
S. C.
, and
Willems
,
S. P.
,
2005
, “
Optimizing the Supply Chain Configuration for New Products
,”
Manage. Sci.
,
51
(
8
), pp.
1165
1180
.
20.
Thonemann
,
U. W.
, and
Bradley
,
J. R.
,
2002
, “
The Effect of Product Variety on Supply-Chain Performance
,”
Eur. J. Oper. Res.
,
143
(
3
), pp.
548
569
.
21.
Viswanadham
,
N.
, and
Gaonkar
,
R. S.
,
2003
, “
Partner Selection and Synchronized Planning in Dynamic Manufacturing Networks
,”
IEEE Trans. Rob. Autom.
,
19
(
1
), pp.
117
130
.
22.
Torabi
,
S. A.
, and
Hassini
,
E.
,
2008
, “
An Interactive Possibilistic Programming Approach for Multiple Objective Supply Chain Master Planning
,”
Fuzzy Sets Syst.
,
159
(
2
), pp.
193
214
.
23.
Gunasekaran
,
A.
,
Lai
,
K.-h.
, and
Cheng
,
T. E.
,
2008
, “
Responsive Supply Chain: A Competitive Strategy in a Networked Economy
,”
Omega
,
36
(
4
), pp.
549
564
.
24.
Williamson
,
O. E.
,
2008
, “
Outsourcing: Transaction Cost Economics and Supply Chain Management*
,”
J. Supply Chain Manage.
,
44
(
2
), pp.
5
16
.
25.
Fawcett
,
S. E.
,
Magnan
,
G. M.
, and
McCarter
,
M. W.
,
2008
, “
Benefits, Barriers, and Bridges to Effective Supply Chain Management
,”
Supply Chain Manage.: Int. J.
,
13
(
1
), pp.
35
48
.
26.
Manuj
,
I.
, and
Mentzer
,
J. T.
,
2008
, “
Global Supply Chain Risk Management Strategies
,”
Int. J. Phys. Distrib. Logist. Manage.
,
38
(
3
), pp.
192
223
.
27.
Rungtusanatham
,
M.
, and
Forza
,
C.
,
2005
, “
Coordinating Product Design, Process Design, and Supply Chain Design Decisions: Part A: Topic Motivation, Performance Implications, and Article Review Process
,”
J. Oper. Manage.
,
23
(
3
), pp.
257
265
.
28.
Forza
,
C.
,
Salvador
,
F.
, and
Rungtusanatham
,
M.
,
2005
, “
Coordinating Product Design, Process Design, and Supply Chain Design Decisions: Part B. Coordinating Approaches, Tradeoffs, and Future Research Directions
,”
J. Oper. Manage.
,
23
(
3
), pp.
319
324
.
29.
Huang
,
G. Q.
,
Zhang
,
X.
, and
Liang
,
L.
,
2005
, “
Towards Integrated Optimal Configuration of Platform Products, Manufacturing Processes, and Supply Chains
,”
J. Oper. Manage.
,
23
(
3
), pp.
267
290
.
30.
Fine
,
C. H.
,
Golany
,
B.
, and
Naseraldin
,
H.
,
2005
, “
Modeling Tradeoffs in Three-Dimensional Concurrent Engineering: A Goal Programming Approach
,”
J. Oper. Manage.
,
23
(
3
), pp.
389
403
.
31.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manage.
,
23
(
3
), pp.
345
369
.
32.
James
,
B. D.
,
Spisak
,
A. B.
, and
Colella
,
W. G.
,
2014
, “
Design for Manufacturing and Assembly Cost Estimate Methodology for Transportation Fuel Cell Systems
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
024503
.
33.
Roohnavazfar
,
M.
,
Houshmand
,
M.
,
Nasiri-Zarandi
,
R.
, and
Mirsalim
,
M.
,
2014
, “
Using Axiomatic Design Theory For Selection of the Optimum Design Solution and Manufacturing Process Plans of a Limited Angle Torque Motor
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051009
.
34.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2004
,
The Disassembly Line: Balancing and Modeling
,
The McGraw-Hills Companies
, pp.
62
68
.
35.
Hu
,
S. J.
,
Ko
,
J.
,
Weyand
,
L.
,
ElMaraghy
,
H.
,
Lien
,
T.
,
Koren
,
Y.
,
Bley
,
H.
,
Chryssolouris
,
G.
,
Nasr
,
N.
, and
Shpitalni
,
M.
,
2011
, “
Assembly System Design and Operations for Product Variety
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
715
733
.
You do not currently have access to this content.