To pursue high-performance computer numerical control (CNC) milling of complex parts, it is crucial to simulate their machining process geometrically and physically with high fidelity beforehand. The geometric simulation is to construct three-dimensional (3D) models of the finished parts and to compute geometric deviation between the models and the part designs, in order to verify the planned tool paths. The physical simulation is to build undeformed chips geometric models and in-process workpiece models and to compute instantaneous cutting forces, in order to optimize the machining parameters. Therefore, it is essential to accurately and efficiently model undeformed chips geometry in machining complex geometric parts. Unfortunately, this work is quite challenging, and no well-established method for this work is available. To address this problem, our work proposes an accurate and effective approach to 3D geometric modeling of undeformed chips geometry in three-axis milling of complex parts. The outstanding feature of this approach is that undeformed chip models and in-process workpiece models can be effectively constructed. This approach lays a theoretical foundation for the geometric and the physical simulations of three-axis milling. It advances the technique of machining simulation and promotes high-performance machining of complex parts.

References

References
1.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
,
1969
,
The Machining of Metals
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
2.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Clarendon Press
,
Oxford
.
3.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End-Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
4.
Yucesan
,
G.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball End-Milling Forces
,”
J. Eng. Ind.
,
118
(
1
), pp.
95
103
.
5.
Feng
,
H. Y.
, and
Su
,
N.
,
2001
, “
A Mechanistic Cutting Force Model for 3D Ball-End-Milling
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
23
29
.
6.
Martin
,
R. R.
, and
Stephenson
,
P. C.
,
1990
, “
Sweeping of Three-Dimensional Objects
,”
Comput. Aided Des.
,
22
(
4
), pp.
223
234
.
7.
Abdel-Malek
,
K.
, and
Yeh
,
H.
,
1997
, “
Geometric Representation of the Swept Volume Using Jacobian Rank-Deficiency Conditions
,”
Comput. Aided Des.
,
29
(
6
), pp.
457
468
.
8.
Abdel-Malek
,
K.
,
Yang
,
J.
, and
Blackmore
,
D.
,
2001
, “
On Swept Volume Formulations: Implicit Surfaces
,”
Comput. Aided Des.
,
33
(
1
), pp.
113
121
.
9.
Zhu
,
L.
, and
Li
,
Z.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(4), p.
041021
.
10.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Shih
,
F.
,
1994
, “
Analysis and Modeling of Deformed Swept Volumes
,”
Comput. Aided Des.
,
26
(
4
), pp.
315
326
.
11.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Wang
,
L. P.
,
1997
, “
The Sweep Envelope Differential Equation Algorithm and Its Application to NC Machining Verification
,”
Comput. Aided Des.
,
29
(
9
), pp.
629
637
.
12.
Joshi
,
S.
, and
Sonawane
,
H.
,
2015
, “
Analytical Modeling of Chip Geometry in High-Speed Ball-End Milling on Inclined Inconel-718 Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
137
(1), p.
011005
.
13.
Chiou
,
C.
, and
Lee
,
Y.
,
1999
, “
A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models
,”
Comput. Aided Des.
,
31
(
12
), pp.
761
776
.
14.
Chiou
,
C.
, and
Lee
,
Y.
,
2002
, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1497
1507
.
15.
Roth
,
D.
,
Bedi
,
S.
,
Ismail
,
F.
, and
Mann
,
S.
,
2001
, “
Surface Swept by a Toroidal Cutter During 5-Axis Machining
,”
Comput. Aided Des.
,
33
(
1
), pp.
57
63
.
16.
Mann
,
S.
, and
Bedi
,
S.
,
2002
, “
Generalization of the Imprint Method to General Surfaces of Revolution for NC Machining
,”
Comput. Aided Des.
,
34
(
5
), pp.
373
378
.
17.
Spence
,
A. D.
, and
Altintas
,
Y.
,
1994
, “
A Solid Modeler Based Milling Process Simulation and Planning System
,”
ASME J. Eng. Ind.
,
116
(
1
), pp.
61
69
.
18.
Yip-Hoi
,
D.
, and
Huang
,
X.
,
2006
, “
Cutter/Workpiece Engagement Feature Extraction From Solid Models for End-Milling
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
249
260
.
19.
El Mounayri
,
H.
,
Spence
,
A. D.
, and
Elbestawi
,
M. A.
,
1998
, “
Milling Process Simulation: A Generic Solid Modeler Based Paradigm
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
213
221
.
20.
Imani
,
B. M.
,
Sadeghi
,
M. H.
, and
Elbestawi
,
M. A.
,
1997
, “
An Improved Process Simulation System for Ball-End-Milling of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
,
38
(9), pp.
1089
1107
.
21.
Voelcker
,
H. B.
, and
Hunt
,
W. A.
,
1981
, “
The Role of Solid Modeling in Machining-Process Modeling and NC Verification
,”
SAE
Technical Paper No. 810195.
22.
Choi
,
B. K.
, and
Jerard
,
R. B.
,
1998
,
Sculptured Surface Machining: Theory and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
23.
Kim
,
G. M.
,
Cho
,
P. J.
, and
Chu
,
C. N.
,
2000
, “
Cutting Force Prediction of Sculptured Surface Ball-End-Milling Using Z-Map
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
277
291
.
24.
Zhu
,
R.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2001
, “
Mechanistic Modeling of the Ball End-Milling Process for Multi-Axis Machining of Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
369
379
.
25.
Childs
,
J. J.
,
1973
,
Numerical Control Part Programming
,
Industrial Press
,
New York
.
26.
Chen
,
Z. C.
, and
Cai
,
W.
,
2008
, “
An Efficient, Accurate Approach to Representing Cutter-Swept Envelopes and Its Applications to Three-Axis Virtual Milling of Sculptured Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031004
.
27.
Stoker
,
J. J.
,
1969
,
Differential Geometry
,
Wiley-Interscience
,
New York
.
28.
Koren
,
Y.
,
Lo
,
C. C.
, and
Shpitalni
,
M.
,
1993
, “
CNC Interpolators: Algorithms and Analysis
,”
American Society of Mechanical Engineers Conference Proceedings, Production Engineering Division
, Vol.
64
, pp.
83
92
.
29.
Zhang
,
Q. G.
, and
Greenway
,
R. B.
,
1998
, “
Development and Implementation of a NURBS Curve Motion Interpolator
,”
Rob. Comput. Integr. Manuf.
,
14
(
1
), pp.
27
36
.
30.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters. Part I: Helical End-Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
31.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York
.
32.
Feng
,
H.
, and
Menq
,
C.
,
1994
, “
Prediction of Cutting Forces in the Ball-End-Milling Process—1: Model Formulation and Model Building Procedure
,”
Int. J. Mach. Tools Manuf.
,
34
(
5
), pp.
697
710
.
You do not currently have access to this content.