This paper proposes a new method to estimate the process capability for a profile geometric tolerance as defined by the ASME Y14.5 standard. The novelty of the method is that it uses the known process capability of a given geometry to predict, using the order statistics theorem, new capabilities for different geometries of higher or lower complexity. By considering the geometrical complexity of mechanical parts, a manufacturing process may be capable (e.g., Cpk > 1.5) for parts with simple geometry and incapable (e.g., Cpk < 1) for parts with complex geometry. In the proposed model, the process capability becomes a mathematical function of both the statistical behavior of the process (e.g., expectation and variance) and the geometric complexity of manufactured surfaces. Three experimental case studies are presented to illustrate the usefulness and the validity of the developed model.

References

References
1.
Pullan
,
T. T.
,
Bhasi
,
M.
, and
Madhu
,
G.
,
2010
, “
Application of Concurrent Engineering in Manufacturing Industry
,”
Int. J. Comput. Integr. Manuf.
,
23
(
5
), pp.
425
440
.
2.
Choi
,
W.
, and
Chung
,
H.
,
2015
, “
Variation Simulation of Compliant Metal Plate Assemblies Considering Welding Distortion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031008
.
3.
American Society of Mechanical Engineers
,
2009
,
Dimensioning and Tolerancing
,
American Society of Mechanical Engineers
, New York, p.
207
.
4.
Montgomery
,
D. C.
,
2007
,
Introduction to Statistical Quality Control
,
4th ed.
,
Wiley India Pvt. Limited
, Delhi.
5.
ISO
,
2007
, Statistical Methods in Process Management Capability and Performance. Part 4: Process Capability Estimates and Performance Measures,
International Standard Organisation
, London, p.
58
.
6.
Wu
,
C.-W.
,
Pearn
,
W. L.
, and
Kotz
,
S.
,
2009
, “
An Overview of Theory and Practice on Process Capability Indices for Quality Assurance
,”
Int. J. Prod. Econ.
,
117
(
2
), pp.
338
359
.
7.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
8.
Mannar
,
K.
, and
Ceglarek
,
D.
,
2009
, “
Functional Capability Space and Optimum Process Adjustments for Manufacturing Processes With In-Specs Failure
,”
IIE Trans.
,
42
(
2
), pp.
95
106
.
9.
American National Standards Institute and American Society of Mechanical Engineers
,
1955
,
Preferred Limits and Fits for Cylindrical Parts: ANSI ASA B4.1-1955
, UDC 621.753.1/.3,
American Society of Mechanical Engineers
, New York.
10.
Swift
,
K. G.
, and
Booker
,
J. D.
,
1996
, “
Engineering for Conformance
,”
TQM Mag.
,
8
(
3
), pp.
54
60
.
11.
Korosec
,
M.
,
Balic
,
J.
, and
Kopac
,
J.
,
2005
, “
Neural Network Based Manufacturability Evaluation of Free Form Machining
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
13
20
.
12.
Delaney
,
K. D.
, and
Phelan
,
P.
,
2009
, “
Design Improvement Using Process Capability Data
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
619
624
.
13.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
, New York.
14.
Barari
,
A.
,
ElMaraghy
,
H. A.
, and
ElMaraghy
,
W. H.
,
2009
, “
Design for Manufacturing of Sculptured Surfaces: A Computational Platform
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021006
.
15.
Ji
,
S.
,
Li
,
X.
,
Ma
,
Y.
, and
Cai
,
H.
,
2000
, “
Optimal Tolerance Allocation Based on Fuzzy Comprehensive Evaluation and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
16
(
7
), pp.
461
468
.
16.
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J. Y.
,
2010
, “
Manufacturing Complexity Evaluation at the Design Stage for Both Machining and Layered Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
3
), pp.
208
215
.
17.
Tahan
,
S. A.
, and
Levesque
,
S.
,
2009
, “
Exploiting the Process Capability of Profile Tolerance According GDTASME-Y14.5M
,”
International Conference on Computers and Industrial Engineering
(
CIE
), Troyes,
France
, July 6–9,
IEEE Computer Society
, pp.
1285
1290
.
18.
Tahan
,
A. S.
, and
Cauvier
,
J.
,
2012
, “
Capability Estimation of Geometrical Tolerance With a Material Modifier by a Hasofer-Lind Index
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021007
.
19.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables, and Stochastic Processes
,
McGraw-Hill
, New York, p.
852
.
20.
Bourdet
,
P.
, and
Mathieu
,
L.
,
1998
,
Tolérancement et métrologie dimensionnelle: Qualité des Produits dans les Entreprises
,
Cetim
, Senlis (Oise).
21.
Barari
,
A.
,
ElMaraghy
,
H.
, and
Knopf
,
G.
,
2007
, “
Evaluation of Geometric Deviations in Sculptured Surfaces Using Probability Density Estimation
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J. K.
Davidson
, ed.,
Springer
,
Netherlands
, pp.
135
146
.
22.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2010
,
Applied Statistics and Probability for Engineers
,
Wiley
, New York.
23.
Kotz
,
S.
, and
Lovelace
,
C. R.
,
1998
,
Process Capability Indices in Theory and Practice
, Arnold, London.
24.
Guid
,
N.
,
Oblonsek
,
C.
, and
Zalik
,
B.
,
1995
, “
Surface Interrogation Methods
,”
Comput. Graph.
,
19
(
4
), pp.
557
574
.
25.
Joshi
,
P.
, and
Sequin
,
C.
,
2007
, “
Energy Minimizers for Curvature-Based Surface Functionals
,”
Comput. Aided Des. Appl.
,
4
(
1–6
), pp.
607
617
.
26.
Olsson
,
C.
, and
Boykov
,
Y.
,
2012
, “
Curvature-Based Regularization for Surface Approximation
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), June 16–21,
Los Alamitos, CA
, pp.
1576
1583
.
27.
Joshi
,
P. P.
,
2008
, “Minimizing Curvature Variation for Aesthetic Surface Design,”
Ph.D. dissertation
University of California
,
Berkeley, CA
, p.
107
.
28.
David
,
H. A.
, and
Nagaraja
,
H. N.
,
2003
,
Order Statistics
,
3rd ed.
,
Wiley
, Hoboken,
NJ
, p.
458
.
29.
Durrans
,
S. R.
,
1992
, “
Distributions of Fractional Order Statistics in Hydrology
,”
Water Resour. Res.
,
28
(
6
), pp.
1649
1655
.
30.
Stigler
,
S.
,
1977
, “
Fractional Order Statistics, With Applications
,”
J. Am. Stat. Assoc.
,
72
(
359
), pp.
544
550
.
31.
Hutson
,
A. D.
,
1999
, “
Calculating Nonparametric Confidence Intervals for Quantiles Using Fractional Order Statistics
,”
J. Appl. Stat.
,
26
(
3
), pp.
343
353
.
You do not currently have access to this content.