In this paper, a method for predicting progressive tool flank wear using extracted features from turned surface images has been proposed. Acquired turned surface images are analyzed by using texture analyses, viz., gray level co-occurrence matrix (GLCM), Voronoi tessellation (VT), and discrete wavelet transform (DWT) based methods to obtain information about waviness, feed marks, and roughness from machined surface images for describing tool flank wear. Two features from each texture analyses are extracted and fed into support vector machine (SVM) based regression models for predicting progressive tool flank wear. Mean correlation coefficient between the measured and predicted tool flank wear is found as 0.991.

References

References
1.
Dutta
,
S.
,
Pal
,
S. K.
, and
Sen
,
R.
,
2014
, “
Digital Image Processing in Machining
,”
Modern Mechanical Engineering—Research, Development and Education
,
J. P.
Davim
, ed.,
Springer
,
Berlin
, pp.
369
412
.
2.
Roth
,
J. T.
,
Djurdjanovic
,
D.
,
Yang
,
X.
,
Mears
,
L.
, and
Kurfess
,
T.
,
2010
, “
Quality and Inspection of Machining Operations—Tool Condition Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041015
.
3.
Rao
,
P.
,
Bukkapatnam
,
S.
,
Beyca
,
O.
,
Kong
,
Z.
, and
Komanduri
,
R.
,
2014
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021008
.
4.
Ertekin
,
Y. M.
,
Kwon
,
Y.
, and
Tseng
,
T. L.
,
2003
, “
Identification of Common Sensory Features for the Control of CNC Milling Operations Under Varying Cutting Conditions
,”
Int. J. Mach. Tool. Manuf.
,
43
(
9
), pp.
897
904
.
5.
Kuttolamadom
,
M.
,
Mehta
,
P.
,
Mears
,
L.
, and
Kurfess
,
T.
,
2015
, “
Correlation of the Volumetric Tool Wear Rate of Carbide Milling Inserts With the Material Removal Rate of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021021
.
6.
Dutta
,
S.
,
Pal
,
S. K.
,
Mukhopadhyay
,
S.
, and
Sen
,
R.
,
2013
, “
Application of Digital Image Processing in Tool Condition Monitoring: A Review
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
3
), pp.
212
232
.
7.
Tuceryan
,
M.
, and
Jain
,
A. K.
,
1998
, “
Texture Analysis
,”
The Handbook of Pattern Recognition and Computer Vision
,
C. H.
Chen
,
L. F.
Pau
, and
P. S. P.
Wang
, eds.,
World Scientific Publisher
,
Singapore
, pp.
207
248
.
8.
Gadelmawla
,
E. S.
,
2011
, “
Estimation of Surface Roughness for Turning Operations Using Image Texture Features
,”
Proc. Inst. Mech. Eng.
, Part B,
225
(
8
), pp.
1281
1292
.
9.
Gadelmawla
,
E. S.
,
Eladawi
,
A. E.
,
Abouelatta
,
O. B.
, and
Elewa
,
I. M.
,
2009
, “
Application of Computer Vision for the Prediction of Cutting Conditions in Milling Operations
,”
Proc. Inst. Mech. Eng.
, Part B,
223
(
7
), pp.
791
800
.
10.
Bamberger
,
H.
,
Ramachandran
,
S.
,
Hong
,
E.
, and
Katz
,
R.
,
2011
, “
Identification of Machining Chatter Marks on Surfaces of Automotive Valve Seats
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041003
.
11.
Liu
,
W.
,
Tu
,
X.
,
Jia
,
Z.
,
Wang
,
W.
,
Ma
,
X.
, and
Bi
,
X.
,
2013
, “
An Improved Surface Roughness Measurement Method for Micro-Heterogeneous Texture in Deep Hole Based on Gray-Level Co-Occurrence Matrix and Support Vector Machine
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
583
593
.
12.
Wang
,
M.
,
Ken
,
T.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031006
.
13.
Datta
,
A.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Sen
,
R.
,
2013
, “
Progressive Cutting Tool Wear Detection From Machined Surface Images Using Voronoi Tessellation Method
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2339
2349
.
14.
Fu
,
S.
,
Muralikrishnan
,
B.
, and
Raja
,
J.
,
2003
, “
Engineering Surface Analysis With Different Wavelet Bases
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
844
852
.
15.
Josso
,
B.
,
Burton
,
D. R.
, and
Lalor
,
M. J.
,
2001
, “
Wavelet Strategy for Surface Roughness Analysis and Characterisation
,”
Comput. Method Appl. Mech. Eng.
,
191
(
8–10
), pp.
829
842
.
16.
Josso
,
B.
,
Burton
,
D. R.
, and
Lalor
,
M. J.
,
2002
, “
Frequency Normalised Wavelet Transform for Surface Roughness Analysis and Characterization
,”
Wear
,
252
(
5–6
), pp.
491
500
.
17.
Chang
,
S. I.
, and
Ravathur
,
J. S.
,
2005
, “
Computer Vision Based Non-Contact Surface Roughness Assessment Using Wavelet Transform and Response Surface Methodology
,”
Qual. Eng.
,
17
(
3
), pp.
435
451
.
18.
Zawada-Tomkiewicz
,
A
.,
2010
, “
Estimation of Surface Roughness Parameter Based on Machined Surface Image
,”
Metrol. Meas. Syst.
,
17
(
3
), pp.
493
504
.
19.
Morala-Argüello
,
P.
,
Barreiro
,
J.
, and
Alegre
,
E.
,
2012
, “
An Evaluation of Surface Roughness Classes by Computer Vision Using Wavelet Transform in the Frequency Domain
,”
Int. J. Adv. Manuf. Technol.
,
59
(
1
), pp.
213
220
.
20.
Lee
,
B. Y.
,
Yu
,
S. F.
, and
Juan
,
H.
,
2004
, “
The Model of Surface Roughness Inspection by Vision System in Turning
,”
Mechatronics
,
14
(
1
), pp.
129
141
.
21.
Kassim
,
A. A.
,
Mian
,
Z.
, and
Mannan
,
M. A.
,
2006
, “
Tool Condition Classification Using Hidden Markov Model Based on Fractal Analysis of Machined Surface Textures
,”
Mach. Vis. Appl.
,
17
(
5
), pp.
327
336
.
22.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2015
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
.
23.
Lee
,
B. Y.
, and
Tarng
,
Y. S.
,
2001
, “
Surface Roughness Inspection by Computer Vision in Turning Operations
,”
Int. J. Mach. Tool Manuf.
,
41
(
9
), pp.
1251
1263
.
24.
Ho
,
S. Y.
,
Lee
,
K. C.
,
Chen
,
S. S.
, and
Ho
,
S. J.
,
2002
, “
Accurate Modeling and Prediction of Surface Roughness by Computer Vision in Turning Operations Using an Adaptive Neuro-Fuzzy Inference System
,”
Int. J. Mach. Tool Manuf.
,
42
(
13
), pp.
1441
1446
.
25.
Lee
,
K. C.
,
Ho
,
S. J.
, and
Ho
,
S. Y.
,
2005
, “
Accurate Estimation of Surface Roughness From Texture Features of the Surface Image Using an Adaptive Neuro-Fuzzy Inference System
,”
Precis. Eng.
,
29
(
1
), pp.
95
100
.
26.
Dhanasekar
,
B.
, and
Ramamoorthy
,
B.
,
2008
, “
Assessment of Surface Roughness Based on Super Resolution Reconstruction Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11
), pp.
1191
1205
.
27.
Dhanasekar
,
B.
, and
Ramamoorthy
,
B.
,
2010
, “
Restoration of Blurred Images for Surface Roughness Evaluation Using Machine Vision
,”
Tribol. Int.
,
43
(
1–2
), pp.
268
276
.
28.
Palani
,
S.
, and
Natarajan
,
U.
,
2011
, “
Prediction of Surface Roughness in CNC End Milling by Machine Vision System Using Artificial Neural Network Based on 2D Fourier Transform
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9
), pp.
1033
1042
.
29.
Saini
,
S
,
Ahuja
,
I. S.
, and
Sharma
,
V. S.
,
2012
, “
Residual Stresses, Surface Roughness, and Tool Wear in Hard Turning: A Comprehensive Review
,”
Mater. Manuf. Process.
,
27
(
6
), pp.
583
598
.
30.
Zawada-Tomkiewicz
,
A
.,
2011
, “
Analysis of Surface Roughness Parameters Achieved by Hard Turning With the Use of PCBN Tools
,”
Est. J. Eng.
,
17
(
1
), pp.
88
99
.
31.
Rodrigues
,
L. L. R.
,
Kantharaj
,
A. N.
,
Kantharaj
,
B.
,
Freitas
,
W. R. C
, and
Murthy
,
B. R. N.
,
2012
, “
Effect of Cutting Parameters on Surface Roughness and Cutting Force in Turning Mild Steel
,”
Res. J. Recent Sci.
,
1
(
10
), pp.
19
26
.
32.
Isik
,
Y
.,
2010
, “
An Experimental Investigation on Effect of Cutting Fluids in Turning With Coated Carbides Tool
,”
J. Mech. Eng.
,
56
(
3
), pp.
195
201
.
33.
ISO 3685
:
1993
Tool Life Testing With Single Point Turning Tools
,
ISO
, Geneva, Switzerland.
34.
Burke
,
M. W.
,
1996
,
Image Acquisition: Handbook of Machine Vision Engineering
, Vol.
1
,
Chapman and Hall
,
London
.
35.
ISO 25178-2
:
2012
,
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters
,
ISO
, Geneva, Switzerland.
36.
Whitehouse
,
D. J.
,
2011
,
Handbook of Surface and Nanometrology
,
CRC Press
,
Boca Raton, FL
, Chap. 2.
37.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2002
,
Digital Image Processing
,
Prentice-Hall
,
Upper Saddle River, NJ
.
38.
Pizer
,
S. M.
,
Amburn
,
E. P.
,
Austin
,
J. D.
,
Cromartie
,
R.
,
Geselowitz
,
A.
,
Greer
,
T.
,
Romeny
,
B. H.
,
Zimmerman
,
J. B.
, and
Zuiderveld
,
K.
,
1987
, “
Adaptive Histogram Equalization and Its Variations
,”
Comput. Vision Graphics Image Process.
,
39
(
3
), pp.
355
368
.
39.
Baraldi
,
A.
, and
Parmiggiani
,
F.
,
1995
, “
An Investigation of the Textural Characteristics Associated With Gray Level Co-Occurrence Matrix Statistical Parameters
,”
IEEE Trans. Geosci. Remote Sens.
,
33
(
2
), pp.
293
304
.
40.
Haralick
,
R. M.
,
Shanmugam
,
K.
, and
Dinsten
,
I.
,
1973
, “
Textural Features for Image Classification
,”
IEEE Trans. Syst. Man Cybernet.
,
3
(
6
), pp.
610
621
.
41.
Dutta
,
S.
,
Datta
,
A.
,
Chakladar
,
N. D.
,
Pal
,
S. K.
,
Mukhopadhyay
,
S.
, and
Sen
,
R.
,
2012
, “
Detection of Tool Condition From the Turned Surface Images Using an Accurate Grey Level Co-Occurrence Technique
,”
Precis. Eng.
,
36
(
3
), pp.
458
466
.
42.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
8
(
6
), pp.
679
698
.
43.
Mallat
,
S.
,
1999
,
A Wavelet Tour of Signal Processing—The Sparse Way
,
Academic Press
,
Burlington, MA
.
44.
Petrou
,
M.
, and
Sevilla
,
P. G.
,
2006
,
Image Processing Dealing With Texture
,
Wiley
,
West Sussex, UK
, Chap. 4.
45.
Reed
,
G. F.
,
Lynn
,
F.
, and
Meade
,
B. D.
,
2002
, “
Use of Coefficient of Variation in Assessing Variability of Quantitative Assays
,”
Clin. Diagn. Lab. Immun.
,
10
(
6
), pp.
1235
1239
.
46.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
47.
Ahuja
,
N.
,
Lertrattanapanich
,
S.
, and
Bose
,
N. K.
,
2005
, “
Properties Determining Choice of Mother Wavelet
,”
IEEE Proc. Vision Image Signal Process.
,
152
(
5
), pp.
659
664
.
48.
Fushiki
,
T
.,
2011
, “
Estimation of Prediction Error by Using k-Fold Cross-Validation
,”
Stat. Comput.
,
21
(
2
), pp.
137
146
.
49.
Cherkassy
,
V.
, and
Ma
,
Y.
,
2004
, “
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
,”
Neural Networks
,
17
(
1
), pp.
113
126
.
You do not currently have access to this content.