The ability of additive manufacturing (AM) processes to produce components with virtually any geometry presents a unique challenge in terms of quantifying the dimensional quality of the part. In this paper, a novel spectral graph theory (SGT) approach is proposed for resolving the following critical quality assurance concern in the AM: how to quantify the relative deviation in dimensional integrity of complex AM components. Here, the SGT approach is demonstrated for classifying the dimensional integrity of standardized test components. The SGT-based topological invariant Fiedler number (λ2) was calculated from 3D point cloud coordinate measurements and used to quantify the dimensional integrity of test components. The Fiedler number was found to differ significantly for parts originating from different AM processes (statistical significance p-value <1%). By comparison, prevalent dimensional integrity assessment techniques, such as traditional statistical quantifiers (e.g., mean and standard deviation) and examination of specific facets/landmarks failed to capture part-to-part variations, proved incapable of ranking the quality of test AM components in a consistent manner. In contrast, the SGT approach was able to consistently rank the quality of the AM components with a high degree of statistical confidence independent of sampling technique used. Consequently, from a practical standpoint, the SGT approach can be a powerful tool for assessing the dimensional integrity of the AM components, and thus encourage wider adoption of the AM capabilities.

References

References
1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
2.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
3.
NIST, 2013, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” report prepared by Energetics Corporation, National Institute of Standards and Technology, Gaithersburg, MD, http://www.energetics.com/industrial-1/2015/2/10/measurement-science-roadmap-for-metal-based-additive-manufacturing
4.
Savio
,
E.
,
De Chiffre
,
L.
, and
Schmitt
,
R.
,
2007
, “
Metrology of Freeform Shaped Parts
,”
CIRP Ann.–Manuf. Technol.
,
56
(
2
), pp.
810
835
.
5.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
6.
Moylan
,
S.
,
Cooke
,
A.
,
Jurrens
,
K.
,
Slotwinski
,
J.
, and
Donmez
,
M. A.
,
2012
, “
A Review of Test Artifacts for Additive Manufacturing
,” National Institute of Standards and Technology (NIST), Gaithersburg, MD, Report No. NISTIR 7858.
7.
Love
,
L.
,
Kunc
,
V.
,
Rios
,
O.
,
Duty
,
C.
,
Elliot
,
A.
,
Post
,
B.
,
Smith
,
R.
, and
Blue
,
C.
,
2014
, “
The Importance of Carbon Fiber to Polymer Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1892
1898
.
8.
Cooke
,
A.
, and
Soons
,
J.
, “
Variability in the Geometric Accuracy of Additively Manufactured Test Parts
,”
21st Annual International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
1
12
.
9.
Atzeni
,
E.
,
Iuliano
,
L.
,
Minetola
,
P.
, and
Salmi
,
A.
,
2012
, “
Proposal of an Innovative Benchmark for Accuracy Evaluation of Dental Crown Manufacturing
,”
Comput. Biol. Med.
,
42
(
5
), pp.
548
555
.
10.
Dimitrov
,
D.
,
van Wijck
,
W.
,
Schreve
,
K.
, and
de Beer
,
N.
,
2006
, “
Investigating the Achievable Accuracy of Three Dimensional Printing
,”
Rapid Prototyping J.
,
12
(
1
), pp.
42
52
.
11.
Gervasi
,
V. R.
,
Schneider
,
A.
, and
Rocholl
,
J.
,
2005
, “
Geometry and Procedure for Benchmarking SFF and Hybrid Fabrication Process Resolution
,”
Rapid Prototyping J.
,
11
(
1
), pp.
4
8
.
12.
Ippolito
,
R.
,
Iuliano
,
L.
, and
Gatto
,
A.
,
1995
, “
Benchmarking of Rapid Prototyping Techniques in Terms of Dimensional Accuracy and Surface Finish
,”
CIRP Ann.–Manuf. Technol.
,
44
(
1
), pp.
157
160
.
13.
Mallepree
,
T.
, and
Bergers
,
D.
,
2009
, “
Accuracy of Medical RP Models
,”
Rapid Prototyping J.
,
15
(
5
), pp.
325
332
.
14.
Rengier
,
F.
,
Mehndiratta
,
A.
,
von Tengg-Kobligk
,
H.
,
Zechmann
,
C. M.
,
Unterhinninghofen
,
R.
,
Kauczor
,
H. U.
, and
Giesel
,
F. L.
,
2010
, “
3D Printing Based on Imaging Data: Review of Medical Applications
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
4
), pp.
335
341
.
15.
Chung
,
F. R. K.
,
1997
,
Spectral Graph Theory
,
American Mathematical Society
,
Providence, RI
.
16.
Fiedler
,
M.
,
1973
, “
Algebraic Connectivity of Graphs
,”
Czech. Math. J.
,
23
(
2
), pp.
298
305
.
17.
Mahesh
,
M.
,
Wong
,
Y.
,
Fuh
,
J.
, and
Loh
,
H.
,
2004
, “
Benchmarking for Comparative Evaluation of RP Systems and Processes
,”
Rapid Prototyping J.
,
10
(
2
), pp.
123
135
.
18.
El-Katatny
,
I.
,
Masood
,
S. H.
, and
Morsi
,
Y. S.
,
2010
, “
Error Analysis of FDM Fabricated Medical Replicas
,”
Rapid Prototyping J.
,
16
(
1
), pp.
36
43
.
19.
Weheba
,
G.
, and
Sanchez-Marsa
,
A.
,
2006
, “
Using Response Surface Methodology to Optimize the Stereolithography Process
,”
Rapid Prototyping J.
,
12
(
2
), pp.
72
77
.
20.
Arrieta
,
C.
,
2012
, “
Quantitative Assessments of Geometric Errors for Rapid Prototyping in Medical Applications
,”
Rapid Prototyping J.
,
18
(
6
), pp.
431
442
.
21.
Munguía
,
J.
,
de Ciurana
,
J.
, and
Riba
,
C.
,
2008
, “
Pursuing Successful Rapid Manufacturing: A Users' Best-Practices Approach
,”
Rapid Prototyping J.
,
14
(
3
), pp.
173
179
.
22.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
23.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011007
.
24.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
25.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
26.
Kruth
,
J. P.
,
Bartscher
,
M.
,
Carmignato
,
S.
,
Schmitt
,
R.
,
De Chiffre
,
L.
, and
Weckenmann
,
A.
,
2011
, “
Computed Tomography for Dimensional Metrology
,”
CIRP Ann.–Manuf. Technol.
,
60
(
2
), pp.
821
842
.
27.
Jiang
,
X.
,
Scott
,
P.
, and
Whitehouse
,
D.
,
2007
, “
Freeform Surface Characterisation–A Fresh Strategy
,”
CIRP Ann.–Manuf. Technol.
,
56
(
1
), pp.
553
556
.
28.
Bi
,
Z. M.
, and
Wang
,
L.
,
2010
, “
Advances in 3D Data Acquisition and Processing for Industrial Applications
,”
Rob. Comput. Integr. Manuf.
,
26
(
5
), pp.
403
413
.
29.
Tang
,
P.
,
Huber
,
D.
,
Akinci
,
B.
,
Lipman
,
R.
, and
Lytle
,
A.
,
2010
, “
Automatic Reconstruction of As-Built Building Information Models From Laser-Scanned Point Clouds: A Review of Related Techniques
,”
Autom. Constr.
,
19
(
7
), pp.
829
843
.
30.
Raja
,
V.
,
Zhang
,
S.
,
Garside
,
J.
,
Ryall
,
C.
, and
Wimpenny
,
D.
,
2005
, “
Rapid and Cost-Effective Manufacturing of High-Integrity Aerospace Components
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
759
773
.
31.
El-Katatny
,
I.
,
Masood
,
S.
, and
Morsi
,
Y.
,
2010
, “
Error Analysis of FDM Fabricated Medical Replicas
,”
Rapid Prototyping J.
,
16
(
1
), pp.
36
43
.
32.
Rao
,
P. K.
,
2013
, “
Sensor-Based Monitoring and Inspection of Surface Morphology in Ultraprecision Manufacturing Processes
,” Ph.D. thesis, Oklahoma State University, Stillwater, OK.
33.
Rao
,
P. K.
,
Beyca
,
O. F.
,
Kong
,
Z.
,
Bukkaptanam
,
S. T.
,
Case
,
K. E.
, and
Komanduri
,
R.
,
2015
, “
A Graph Theoretic Approach for Quantification of Surface Morphology and Its Application to Chemical Mechanical Planarization (CMP) Process
,”
IIE Trans.
,
47
(
10
), pp.
1088
1111
.
You do not currently have access to this content.