High-performance manufacturing is difficult to perform using conventional materials removal processes since a surface integrity demand for high-performance components is strongly restricted by intrinsic interactions between the geometrical feature of components and the physical and chemical characteristics of the base material. Surface modification techniques based on known processing loads, including mechanical, thermomechanical, and thermochemical loads, are utilized for manufacturing the Fe–Cr–Ni austenitic stainless steel components. The geometrical feature and the physical and chemical characteristics as well as the controllable interactions between them are identified in the surface integrity of the surface-modified components by creating new surface layers coupled with base material. The effective surface states control, including surface morphology, microhardness, and residual stress, leads to surface integrity improvement by reducing geometrical, physical, and chemical constraints from base materials, otherwise unobtainable merely using conventional materials removal manufacturing. The fatigue life of the surface-modified components is significantly increased due to the improved surface integrity. It is proposed that high surface integrity possesses a pivotal role between the functional properties of components and their geometrical feature and materials characteristics for the high-performance manufacturing.

References

References
1.
Jayaram
,
S.
,
2009
, “
SLUCUBE: Innovative High Performance Nanosatellite Science and Technology Demonstration Mission
,”
Acta Astronaut.
,
65
(
11–12
), pp.
1804
1812
.
2.
Xia
,
J. C.
, and
Durfee
,
W. K.
,
2013
, “
Analysis of Small-Scale Hydraulic Actuation Systems
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091001
.
3.
Aschenbruck
,
J.
,
Adamczuk
,
R.
, and
Seume
,
J. R.
,
2014
, “
Recent Progress in Turbine Blade and Compressor Blisk Regeneration
,”
Procedia CIRP
,
22
(
8–10
), pp.
256
262
.
4.
Klocke
,
F.
, and
Willms
,
H.
,
2007
, “
Methodology to Describe the Influence of Manufacturing Processes on the Part Functionality
,”
Prod. Process
,
1
(
2
), pp.
163
168
.
5.
Bhowmick
,
S.
, and
Alpas
,
A. T.
,
2013
, “
The Performance of Diamond-Like Carbon Coated Drills in Thermally Assisted Drilling of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061019
.
6.
Kishawya
,
H. A.
,
Becze
,
C. E.
, and
McIntosh
,
D. G.
,
2004
, “
Tool Performance and Attainable Surface Quality During the Machining of Aerospace Alloys Using Self-Propelled Rotary Tools
,”
J. Mater. Process. Technol.
,
152
(
3
), pp.
266
271
.
7.
Bruzzone
,
A. A. G.
,
Costa
,
H. L.
,
Lonardo
,
P. M.
, and
Lucca
,
D. A.
,
2008
, “
Advances in Engineered Surfaces for Functional Performance
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
750
769
.
8.
Soo
,
S. L.
,
Antara
,
M. T.
,
Aspinwall
,
D. K.
,
Sage
,
C.
,
Cuttell
,
M.
,
Perez
,
R.
, and
Winn
,
A. J.
,
2013
, “
The Effect of Wire Electrical Discharge Machining on the Fatigue Life of Ti–6Al–2Sn–4Zr–6Mo Aerospace Alloy
,”
Procedia CIRP
,
6
, pp.
215
219
.
9.
Lucchetta
,
G.
,
Ferraris
,
E.
,
Tristo
,
G.
, and
Reynaerts
,
D.
,
2012
, “
Influence of Mould Thermal Properties on the Replication of Micro Parts Via Injection Moulding
,”
Procedia CIRP
,
2
, pp.
113
117
.
10.
Vayre
,
B.
,
Vignat
,
F.
, and
Vileneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
11.
Kopac
,
J.
, and
Krajnik
,
P.
,
2006
, “
High-Performance Grinding—A Review
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
278
284
.
12.
Guo
,
D. M.
,
2011
, “
Function-Geometry Integrated Precision Machining Methods and Technologies for High Performance Workpieces
,”
Eng. Sci. China
,
13
(
10
), pp.
47
57
.
13.
Brinksmeier
,
E.
,
Glaebe
,
R.
, and
Osmer
,
J.
,
2011
, “
Surface Integrity Demands of High Precision Optical Molds and Realization by a New Process Chain
,”
Procedia Eng.
,
19
, pp.
40
43
.
14.
Schulze
,
V.
,
Hoffmeister
,
J.
, and
Klemenz
,
M.
,
2011
, “
Correlation of Mechanical Surface Treatments, Induced Surface States and Fatigue Performance of Steel Components
,”
Procedia Eng.
,
19
, pp.
324
330
.
15.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
16.
Hsu
,
S.-T.
,
Tan
,
H.
, and
Yao
,
Y. L.
,
2014
, “
Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011005
.
17.
Strafford
,
K. N.
, and
Subramanian
,
C.
,
1995
, “
Surface Engineering: An Enabling Technology for Manufacturing Industry
,”
J. Mater. Process. Technol.
,
53
(
1–2
), pp.
393
403
.
18.
Bewilogua
,
K.
,
Bräuer
,
G.
,
Dietz
,
A.
,
Gäbler
,
J.
,
Goch
,
G.
,
Karpuschewski
,
B.
, and
Szyszka
,
B.
,
2009
, “
Surface Technology for Automotive Engineering
,”
CIRP Ann. Manuf. Technol.
,
58
(
2
), pp.
608
627
.
19.
Lei
,
M. K.
,
Wang
,
G. Q.
, and
Tan
,
J. L.
,
2014
, “
An Impact Head of Hidden Pin Configuration for Automatic Processing of Ultrasonic Impact Treatment
,” China Patent No. CN 102719637 B.
20.
Lei
,
M. K.
,
Zhu
,
X. P.
,
Liu
,
C.
,
Xin
,
J. P.
,
Han
,
X. G.
,
Li
,
P.
,
Dong
,
Z. H.
,
Wang
,
X.
, and
Miao
,
S. M.
,
2009
, “
A Novel Shock Processing by High-Intensity Pulsed Ion Beam
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031013
.
21.
Li
,
G. Y.
,
Wang
,
Z. Y.
, and
Lei
,
M. K.
,
2012
, “
Transition of Wear Mechanisms of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel Against Ceramic Counterface
,”
ASME J. Tribol.
,
134
(
1
), p.
011601
.
22.
Brinksmeier
,
E.
,
Glaebe
,
R.
,
Klocke
,
F.
, and
Lucca
,
D. A.
,
2011
, “
Process Signatures—An Alternative Approach to Predicting Functional Workpiece Properties
,”
Procedia Eng.
,
19
, pp.
44
52
.
23.
Brinksmeier
,
E.
,
Klocke
,
F.
,
Lucca
,
D. A.
,
Soelter
,
J.
, and
Meyer
,
D.
,
2014
, “
Process Signatures—A New Approach to Solve the Inverse Surface Integrity Problem in Machining Processes
,”
Procedia CIRP
,
13
, pp.
429
434
.
24.
Kompella
,
S.
,
Moylan
,
S. P.
, and
Chandrasekar
,
S.
,
2001
, “
Mechanical Properties of Thin Surface Layers Affected by Material Removal Processes
,”
Surf. Coat. Technol.
,
146–147
, pp.
384
390
.
25.
Mann
,
J. B.
,
Guo
,
Y.
,
Saldana
,
C.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2011
, “
Enhancing Material Removal Processes Using Modulation-Assisted Machining
,”
Tribol. Int.
,
44
(
10
), pp.
1225
1235
.
26.
Tangwarodomnukun
,
V.
,
Wang
,
J.
,
Huang
,
C. Z.
, and
Zhu
,
H. T.
,
2014
, “
Heating and Material Removal Process in Hybrid Laser-Waterjet Ablation of Silicon Substrates
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
1
16
.
27.
Bosheh
,
S. S.
, and
Mativenga
,
P. T.
,
2006
, “
White Layer Formation in Hard Turning of H13 Tool Steel at High Cutting Speeds Using CBN Tooling
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
225
233
.
28.
Bushlya
,
V.
,
Zhou
,
J. M.
,
Lenrick
,
F.
,
Avdovic
,
P.
, and
Ståhl
,
J.-E.
,
2011
, “
Characterization of White Layer Generated When Turning Aged Inconel 718
,”
Procedia Eng.
,
19
, pp.
60
66
.
29.
Umbrello
,
D.
, and
Filice
,
L.
,
2009
, “
Improving Surface Integrity in Orthogonal Machining of Hardened AISI 52100 Steel by Modeling White and Dark Layers Formation
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
73
76
.
30.
Hosseini
,
S. B.
,
Dahlgren
,
R.
,
Ryttberg
,
K.
, and
Klement
,
U.
,
2014
, “
Dissolution of Iron–Chromium Carbides During White Layer Formation Induced by Hard Turning of AISI 52100 Steel
,”
Procedia CIRP
,
14
, pp.
107
112
.
You do not currently have access to this content.