In this work, the feasibility to recycle pure magnesium machining chips is first investigated experimentally with a solid-state recycling technique of friction stir extrusion (FSE). Heat generated from frictions among the stirring chips, die, and mold facilitates the extrusion process. Mechanical tests, optical microscopy (OM), and scanning electron microscopy (SEM) analysis are conducted to evaluate the mechanical and metallurgical properties of extruded wires. Mechanical tests show that almost all recycled specimens can achieve higher strength and elongation than original material of magnesium at room temperature. Due to a refined grain microstructure, good mechanical properties are obtained for samples produced by the rotational speed of 250 rpm and plunge rate of 14 mm/min. A metallo-thermo-mechanical coupled analysis is further conducted to understand the effects of process parameters. The analysis is carried out with a multistep two-dimensional (2D) coupled Eulerian–Lagrangian finite-element (FE) method using abaqus. The material constitutive model considers both work hardening and strain softening. Material grain size evolution is modeled by dynamic recrystallization (DRX) kinetics laws. The deformation process and its consequential microstructural attributes of grain size and microhardness are simulated. Physics principles of the microstructure evolution are discussed based on both experimental and numerical analyses.

References

References
1.
Zhang
,
T.
,
Ji
,
Z.
, and
Wu
,
S.
,
2011
, “
Effect of Extrusion Ratio on Mechanical and Corrosion Properties of AZ31B Alloys Prepared by a Solid Recycling Process
,”
Mater. Des.
,
32
(
5
), pp.
2742
2748
.
2.
Ji
,
Z. S.
,
Wen
,
L. H.
, and
Li
,
X. L.
,
2009
, “
Mechanical Properties and Fracture Behavior of Mg–2.4Nd–0.6Zn–0.6Zr Alloys Fabricated by Solid Recycling Process
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2128
2134
.
3.
Chino
,
Y.
,
Hoshika
,
T.
, and
Mabuchi
,
M.
,
2006
, “
Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repeatedly Recycled by Hot Extrusion
,”
Mater. Trans.
,
47
(
4
), pp.
1040
1046
.
4.
Chino
,
Y.
,
Hoshika
,
T.
, and
Mabuchi
,
M.
,
2006
, “
Enhanced Corrosion Properties of Pure Mg and AZ31Mg Alloy Recycled by Solid-State Process
,”
Mater. Sci. Eng.: A
,
435–436
(
5
), pp.
275
281
.
5.
Ying
,
T.
,
Zheng
,
M.
,
Hu
,
X.
, and
Wu
,
K.
,
2010
, “
Recycling of AZ91 Mg Alloy Through Consolidation of Machined Chips by Extrusion and ECAP
,”
Trans. Nonferrous Met. Soc. China
,
20
(Suppl. 2), pp.
s604
s607
.
6.
Wu
,
S.
,
Ji
,
Z.
,
Rong
,
S.
, and
Hu
,
M.
,
2010
, “
Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Prepared by Solid-State Recycling Process From Chips
,”
Trans. Nonferrous Met. Soc. China
,
20
(
5
), pp.
783
788
.
7.
Morisada
,
Y.
,
Fujii
,
H.
,
Nagaoka
,
T.
, and
Fukusumi
,
M.
,
2006
, “
MWCNTs/AZ31 Surface Composites Fabricated by Friction Stir Processing
,”
Mater. Sci. Eng.: A
,
419
(
1–2
), pp.
344
348
.
8.
Chino
,
Y.
,
Kishihara
,
R.
,
Shimojima
,
K.
,
Hosokawa
,
H.
,
Yamada
,
Y.
,
Wen
,
C.
,
Iwasaki
,
H.
, and
Mabuchi
,
M.
,
2002
, “
Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process
,”
Mater. Trans.
,
43
(
10
), pp.
2437
2442
.
9.
Hu
,
M.
,
Ji
,
Z.
,
Chen
,
X.
, and
Zhang
,
Z.
,
2008
, “
Effect of Chip Size on Mechanical Property and Microstructure of AZ91D Magnesium Alloy Prepared by Solid State Recycling
,”
Materials Charact.
,
59
(
4
), pp.
385
389
.
10.
Hu
,
M.
,
Ji
,
Z.
,
Chen
,
X.
,
Wang
,
Q.
, and
Ding
,
W.
,
2012
, “
Solid-State Recycling of AZ91D Magnesium Alloy Chips
,”
Trans. Nonferrous Met. Soc. China
,
22
(Suppl. 1), pp.
s68
s73
.
11.
Mabuchi
,
M.
,
Kubota
,
K.
, and
Higashi
,
K.
,
1995
, “
New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars
,”
Mater. Trans.
, JIM,
36
(
10
), pp.
1249
1254
.
12.
Nakanishi
,
M.
,
Mabuchi
,
M.
,
Saito
,
N.
,
Nakamura
,
M.
, and
Higashi
,
K.
,
1998
, “
Tensile Properties of the ZK60 Magnesium Alloy Produced by Hot Extrusion of Machined Chip
,”
J. Mater. Sci. Lett.
,
17
(
23
), pp.
2003
2005
.
13.
Thomas
,
W. M.
,
Nicholas
,
E. D.
, and
Jones
,
S. B.
,
1993
, “
Friction Extrusion, Metal Working
,” U.S. Patent No. 5,262,123.
14.
Fehrenbacher
,
A.
,
Schmale
,
J. R.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021009
.
15.
Fehrenbacher
,
A.
,
Smith
,
C. B.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2014
, “
Combined Temperature and Force Control for Robotic Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021007
.
16.
Ma
,
X.
,
Howard
,
S. M.
, and
Jasthi
,
B. K.
,
2014
, “
Friction Stir Welding of Bulk Metallic Glass Vitreloy 106a
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051012
.
17.
Pellegrino
,
J. L.
,
Margolis
,
N.
,
Justiniano
,
M.
, and
Miller
,
M.
,
2004
,
Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining
, Office of Energy Efficiency & Renewable Energy, Washington, DC.
18.
Das
,
S.
,
Green
,
J. S.
,
Kaufman
,
J. G.
,
Emadi
,
D.
, and
Mahfoud
,
M.
,
2010
, “
Aluminum Recycling—An Integrated, Industrywide Approach
,”
JOM
,
62
(
2
), pp.
23
26
.
19.
Tang
,
W.
, and
Reynolds
,
A. P.
,
2010
, “
Production of Wire Via Friction Extrusion of Aluminum Alloy Machining Chips
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2231
2237
.
20.
Abdi-Behnagh
,
R.
,
Mahdavinejad
,
R.
,
Yavari
,
A.
,
Abdollahi
,
M.
, and
Narvan
,
M.
,
2014
, “
Production of Wire From AA7277 Aluminum Chips Via Friction-Stir Extrusion (FSE)
,”
Metall. Mater. Trans. B
,
45
(
4
), pp.
1484
1489
.
21.
Sun
,
H. Q.
,
Shi
,
Y.-N.
,
Zhang
,
M.-X.
, and
Lu
,
K.
,
2007
, “
Plastic Strain-Induced Grain Refinement in the Nanometer Scale in a Mg Alloy
,”
Acta Mater.
,
55
(
3
), pp.
975
982
.
22.
Xu
,
Y.
,
Hu
,
L. X.
, and
Sun
,
Y.
,
2014
, “
Dynamic Recrystallization Kinetics of As-Cast AZ91D alloy
,”
Trans. Nonferrous Met. Soc. China
,
24
(
6
), pp.
1683
1689
(English Edition).
23.
Mirzadeh
,
H.
,
Roostaei
,
M.
,
Parsa
,
M. H.
, and
Mahmudi
,
R.
,
2015
, “
Rate Controlling Mechanisms During Hot Deformation of Mg–3Gd–1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning
,”
Mater. Des.
,
68
, pp.
228
231
.
24.
Sitdikov
,
O.
, and
Kaibyshev
,
R.
,
2001
, “
Dynamic Recrystallization in Pure Magnesium
,”
Mater. Trans.
,
42
(
9
), pp.
1928
1937
.
25.
Wang
,
L.
,
Fan
,
Y.
,
Huang
,
G.
, and
Huang
,
G.
,
2003
, “
Flow Stress and Softening Behavior of Wrought Magnesium Alloy AZ31B at Elevated Temperature
,”
Trans. Nonferrous Met. Soc. China
,
13
(
2
), pp.
335
338
.
26.
Liu
,
J.
,
Cui
,
Z.
, and
Li
,
C.
,
2008
, “
Modeling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B
,”
Comput. Mater. Sci.
,
41
(
3
), pp.
375
382
.
27.
Li
,
W.
,
Zhao
,
G.
,
Ma
,
X.
, and
Gao
,
J.
,
2012
, “
Flow Stress Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperatures
,”
Int. J. Appl. Phys. Math.
,
2
(
2
), pp.
83
88
.
28.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.
29.
Shen
,
N.
,
Ding
,
H.
,
Bowers
,
R.
,
Yu
,
Y.
,
Pence
,
C. N.
,
Ozbolat
, I
. T.
, and
Stanford
,
C. M.
,
2015
, “
Surface Micropatterning of Pure Titanium for Biomedical Applications Via High Energy Pulse Laser Peening
,”
ASME J. Micro Nano-Manuf.
,
3
(
1
), p.
11005
.
30.
Yanagimoto
,
J.
,
Karhausen
,
K.
,
Brand
,
A. J.
, and
Kopp
,
R.
,
1998
, “
Incremental Formulation for the Prediction of Flow Stress and Microstructural Change in Hot Forming
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
316
322
.
31.
Sellars
,
C. M.
,
1990
, “
Modeling Microstructural Development During Hot Rolling
,”
Mater. Sci. Technol.
,
6
(
11
), pp.
1072
1081
.
32.
Yada
,
H.
,
1988
, “
Prediction of Microstructural Changes and Mechanical Properties in Hot Strip Rolling
,”
Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy
, pp.
105
119
.
33.
Laasraoui
,
A.
, and
Jonas
,
J. J.
,
1991
, “
Recrystallization of Austenite After Deformation at High Temperatures and Strain Rates—Analysis and Modeling
,”
Metall. Trans. A, Phys. Metall. Mater. Sci.
,
22A
(
1
), pp.
151
160
.
34.
Kim
,
S.-I.
, and
Yoo
,
Y.-C.
,
2001
, “
Dynamic Recrystallization Behavior of AISI 304 Stainless Steel
,”
Mater. Sci. Eng.: A
,
311
(
1–2
), pp.
108
113
.
35.
Serajzadeh
,
S.
, and
Karimi Taheri
,
A.
,
2003
, “
Prediction of Flow Stress at Hot Working Condition
,”
Mech. Res. Commun.
,
30
(
1
), pp.
87
93
.
36.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.
37.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
38.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1003
1013
.
39.
ASTM E407-07e1
,
2007
,
Standard Practice for Microetching Metals and Alloys
,
ASTM International
,
West Conshohocken, PA
.
40.
ASTM E3-11
,
2011
,
Standard Guide for Preparation of Metallographic Specimens
,
ASTM International
,
West Conshohocken, PA
.
41.
ASTM E112-13
,
2013
,
Standard Test Methods for Determining Average Grain Size
,
ASTM International
,
West Conshohocken, PA
.
42.
ASTM E8/E8M-13a
,
2013
,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
43.
ASTM E384-11e1
,
2011
,
Standard Test Method for Knoop and Vickers Hardness of Materials
,
ASTM International
,
West Conshohocken, PA
.
44.
Asadi
,
P.
,
Besharati Givi
,
M. K.
, and
Faraji
,
G.
,
2010
, “
Producing Ultrafine-Grained AZ91 From As-Cast AZ91 by FSP
,”
Mater. Manuf. Processes
,
25
(
11
), pp.
1219
1226
.
45.
Commin
,
L.
,
Dumont
,
M.
,
Masse
,
J. E.
, and
Barrallier
,
L.
,
2009
, “
Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters
,”
Acta Mater.
,
57
(
2
), pp.
326
334
.
46.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2012
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
,
Wiley
, Hoboken, NJ.
47.
Gan
,
W. M.
,
Zheng
,
M. Y.
,
Chang
,
H.
,
Wang
,
X. J.
,
Qiao
,
X. G.
,
Wu
,
K.
,
Schwebke
,
B.
, and
Brokmeier
,
H. G.
,
2009
, “
Microstructure and Tensile Property of the ECAPed Pure Magnesium
,”
J. Alloys Compd.
,
470
(
1–2
), pp.
256
262
.
48.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
79
88
.
49.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
51014
.
50.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.
51.
Sun
,
H. F.
,
Li
,
C. J.
,
Xie
,
Y.
, and
Bin
,
F. W.
,
2012
, “
Microstructures and Mechanical Properties of Pure Magnesium Bars by High Ratio Extrusion and Its Subsequent Annealing Treatment
,”
Trans. Nonferrous Met. Soc. China
,
22
(
Suppl. 2
), pp.
s445
s449
(English Edition).
52.
Liu
,
J.
,
Cui
,
Z.
, and
Ruan
,
L.
,
2011
, “
A New Kinetics Model of Dynamic Recrystallization for Magnesium Alloy AZ31B
,”
Mater. Sci. Eng.: A
,
529
, pp.
300
310
.
53.
Liu
,
J.
,
2012
, “
Experimental Study and Modeling of Mechanical Micro-Machining of Particle Reinforced Heterogeneous Materials
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, The University of Central Florida, Orlando, FL.
54.
Frost
,
H. J.
, and
Ashby
,
F.
,
1982
,
Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press
, Kidlington, Oxford, UK.
55.
Erickson
,
S. C.
,
1990
, “
Properties of Pure Metals
,”
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook
, Vol.
2
,
ASM International
, Materials Park, OH, pp.
1099
1201
.
56.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(1), p.
138
.
57.
Pereira
,
D.
,
Gandra
,
J.
,
Pamies-Teixeira
,
J.
,
Miranda
,
R. M.
, and
Vilaça
,
P.
,
2014
, “
Wear Behaviour of Steel Coatings Produced by Friction Surfacing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2858
2868
.
58.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Experimental Evaluation and Modeling Analysis of Micromilling of Hardened H13 Tool Steels
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041007
.
You do not currently have access to this content.