A PED (precision extrusion deposition)/replica molding process enables scaffold guided tissue engineering of a heterocellular microfluidic device. We investigate two types of cell-laden devices: the first with a 3D microfluidic manifold fully embedded in a PDMS (polydimethylsiloxane) substrate and the second a channel network on the surface of the PDMS substrate for cell printing directly into device channels. Fully embedded networks are leak-resistant with simplified construction methods. Channels exposed to the surface are used as mold to hold bioprinted cell-laden matrix for controlled cell placement throughout the network from inlet to outlet. The result is a 3D cell-laden microfluidic device with improved leak-resistance (up to 2.0 mL/min), pervasive diffusion and control of internal architecture.

References

1.
Shuler
,
M. L.
,
Viravaidya
,
K.
, and
Sin
,
A.
,
2004
, “
Development of a Microscale Cell Culture Analog to Probe Naphthalene Toxicity
,”
Biotechnol. Prog.
,
20
(
1
), pp.
316
323
.
2.
Jensen
,
K. F.
,
El-Ali
,
J.
, and
Sorger
,
P. K.
,
2006
, “
Cells on Chips
,”
Nature
,
442
(
7101
), pp.
403
411
.
3.
Dickson
,
M.
, and
Gagnon
,
J. P.
,
2004
, “
Key Factors in the Rising Cost of New Drug Discovery and Development
,”
Nat. Rev. Drug Discovery
,
3
(
5
), pp.
417
429
.
4.
van Midwoud
,
P. M.
,
Verpoorte
,
E.
, and
Groothuis
,
G. M. M.
,
2011
, “
Microfluidic Devices for In Vitro Studies on Liver Drug Metabolism and Toxicity
,”
Integr. Biol.
,
3
(
5
), pp.
509
521
.
5.
Griffith
,
L. G.
,
Sivaraman
,
A.
,
Leach
,
J. K.
,
Townsend
,
S.
,
Iida
,
T.
,
Hogan
,
B. J.
,
Stolz
,
D. B.
,
Fry
,
R.
,
Samson
,
L. D.
, and
Tannenbaum
,
S. R.
,
2005
, “
A Microscale In Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction
,”
Curr. Drug Metab.
,
6
(
6
), pp.
569
591
.
6.
Brandon
,
E. F. A.
,
Raap
,
C. D.
,
Meijerman
,
I.
,
Beijnen
,
J. H.
, and
Schellens
,
J. H. M.
,
2003
, “
An Update on In Vitro Test Methods in Human Hepatic Drug Biotransformation Research: Pros and Cons
,”
Toxicol. Appl. Pharmacol.
,
189
(
3
), pp.
233
246
.
7.
Cheng
,
K. C.
,
Maguire
,
T. J.
,
Novik
,
E.
,
Chao
,
P.
,
Barminko
,
J.
,
Nahmias
,
Y.
, and
Yarmush
,
M. L.
,
2009
, “
Design and Application of Microfluidic Systems for In Vitro Pharmacokinetic Evaluation of Drug Candidates
,”
Curr. Drug Metab.
,
10
(
10
), pp.
1192
1199
.
8.
Wu
,
M. H.
,
Huang
,
S. B.
, and
Lee
,
G. B.
,
2010
, “
Microfluidic Cell Culture Systems for Drug Research
,”
Lab Chip
,
10
(
8
), pp.
939
956
.
9.
Kim
,
S.
, and
Marimuthu
,
M.
,
2011
, “
Microfluidic Cell Coculture Methods for Understanding Cell Biology, Analyzing Bio/Pharmaceuticals, and Developing Tissue Constructs
,”
Anal. Biochem.
,
413
(
2
), pp.
81
89
.
10.
Yeo
,
L. Y.
,
Chang
,
H. C.
,
Chan
,
P. P.
, and
Friend
,
J. R.
,
2011
, “
Microfluidic Devices for Bioapplications
,”
Small
,
7
(
1
), pp.
12
48
.
11.
Whitesides
,
G. M.
,
Siegel
,
A. C.
,
Tang
,
S. K. Y.
,
Nijhuis
,
C. A.
,
Hashimoto
,
M.
,
Phillips
,
S. T.
, and
Dickey
,
M. D.
,
2010
, “
Cofabrication: A Strategy for Building Multicomponent Microsystems
,”
Accounts Chem. Res.
,
43
(
4
), pp.
518
528
.
12.
Buyukhatipoglu
,
K.
,
Chang
,
R.
,
Sun
,
W.
, and
Clyne
,
A. M.
,
2010
, “
Bioprinted Nanoparticles for Tissue Engineering Applications
,”
Tissue Eng., Part C
,
16
(
4
), pp.
631
642
.
13.
Walker
,
G. M.
,
Zeringue
,
H. C.
, and
Beebe
,
D. J.
,
2004
, “
Microenvironment Design Considerations for Cellular Scale Studies
,”
Lab Chip
,
4
(
2
), pp.
91
97
.
14.
Rouwkema
,
J.
,
Rivron
,
N. C.
, and
van Blitterswijk
,
C. A.
,
2008
, “
Vascularization in Tissue Engineering
,”
Trends Biotechnol.
,
26
(
8
), pp.
434
441
.
15.
Song
,
J. W.
,
Cavnar
,
S. P.
,
Walker
,
A. C.
,
Luker
,
K. E.
,
Gupta
,
M.
,
Tung
,
Y. C.
,
Luker
,
G. D.
, and
Takayama
,
S.
,
2009
, “
Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells
,”
PLoS ONE
,
4
(
6
), p.
e5756
.
16.
Takayama
,
S.
,
Hsiao
,
A. Y.
,
Torisawa
,
Y. S.
,
Tung
,
Y. C.
,
Sud
,
S.
,
Taichman
,
R. S.
, and
Pienta
,
K. J.
,
2009
, “
Microfluidic System for Formation of PC-3 Prostate Cancer Co-Culture Spheroids
,”
Biomaterials
,
30
(
16
), pp.
3020
3027
.
17.
Kong
,
B. H.
,
Song
,
X. Y.
, and
Li
,
D.
,
2008
, “
A New Tool for Probing of Cell–Cell Communication: Human Embryonic Germ Cells Inducing Apoptosis of SKOV3 Ovarian Cancer Cells on a Microfluidic Chip
,”
Biotechnol. Lett.
,
30
(
9
), pp.
1537
1543
.
18.
Cheng
,
K. C.
,
Novik
,
E.
,
Maguire
,
T. J.
,
Chao
,
P. Y.
, and
Yarmush
,
M. L.
,
2010
, “
A Microfluidic Hepatic Coculture Platform for Cell-Based Drug Metabolism Studies
,”
Biochem. Pharmacol.
,
79
(
7
), pp.
1036
1044
.
19.
Kamm
,
R. D.
,
Sudo
,
R.
,
Chung
,
S.
,
Zervantonakis
,
I. K.
,
Vickerman
,
V.
,
Toshimitsu
,
Y.
, and
Griffith
,
L. G.
,
2009
, “
Transport-Mediated Angiogenesis in 3D Epithelial Coculture
,”
FASEB J.
,
23
(
7
), pp.
2155
2164
.
20.
Bornens
,
M.
,
Thery
,
M.
,
Racine
,
V.
,
Pepin
,
A.
,
Piel
,
M.
,
Chen
,
Y.
, and
Sibarita
,
J. B.
,
2005
, “
The Extracellular Matrix Guides the Orientation of the Cell Division Axis
,”
Nat. Cell Biol.
,
7
(
10
), pp.
947
953
.
21.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.
22.
Yu
,
Y.
,
Zhang
,
Y. H.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.
23.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
24.
Sun
,
W.
,
Starly
,
B.
,
Darling
,
A.
, and
Gomez
,
C.
,
2004
, “
Computer-Aided Tissue Engineering: Application to Biomimetic Modelling and Design of Tissue Scaffolds
,”
Biotechnol. Appl. Biochem.
,
39
(
Pt 1
), pp.
49
58
.
25.
Hamid
,
Q.
,
Wang
,
C.
,
Zhao
,
Y.
,
Snyder
,
J.
, and
Sun
,
W.
,
2014
, “
A Three-Dimensional Cell-Laden Microfluidic Chip for In Vitro Drug Metabolism Detection
,”
Biofabrication
,
6
(
2
), p.
025008
.
26.
Pennella
,
F.
,
Cerino
,
G.
,
Massai
,
D.
,
Gallo
,
D.
,
Falvo D'Urso Labate
,
G.
,
Schiavi
,
A.
,
Deriu
,
M. A.
,
Audenino
,
A.
, and
Morbiducci
,
U.
,
2013
, “
A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability
,”
Ann. Biomed. Eng.
,
41
(
10
), pp.
2027
2041
27.
Sachlos
,
E.
, and
Czernuszka
,
J. T.
,
2003
, “
Making Tissue Engineering Scaffolds Work. Review: the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds
,”
Eur. Cells Mater.
,
5
, pp.
29
39; discussion 39–40
.
28.
Owen
,
S. C.
, and
Shoichet
,
M. S.
,
2010
, “
Design of Three-Dimensional Biomimetic Scaffolds
,”
J. Biomed. Mater. Res., Part A
,
94A
(
4
), pp.
1321
1331
.
29.
Sobral
,
J. M.
,
Caridade
,
S. G.
,
Sousa
,
R. A.
,
Mano
,
J. F.
, and
Reis
,
R. L.
,
2011
, “
Three-Dimensional Plotted Scaffolds With Controlled Pore Size Gradients: Effect of Scaffold Geometry on Mechanical Performance and Cell Seeding Efficiency
,”
Acta Biomater.
,
7
(
3
), pp.
1009
1018
.
30.
Oh
,
S. H.
,
Park
,
I. K.
,
Kim
,
J. M.
, and
Lee
,
J. H.
,
2007
, “
In Vitro and In Vivo Characteristics of PCL Scaffolds With Pore Size Gradient Fabricated by a Centrifugation Method
,”
Biomaterials
,
28
(
9
), pp.
1664
1671
.
31.
Melchels
,
F. P. W.
,
Bertoldi
,
K.
,
Gabbrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
(
27
), pp.
6909
6916
.
32.
van der Meer
,
A. D.
, and
van den Berg
,
A.
,
2012
, “
Organs-on-Chips: Breaking the In Vitro Impasse
,”
Integr. Biol.
,
4
(
5
), pp.
461
470
.
33.
Hamid
,
Q.
,
Wang
,
C.
,
Snyder
,
J.
,
Williams
,
S.
,
Liu
,
Y.
, and
Sun
,
W.
,
2015
, “
Maskless Fabrication of Cell-Laden Microfluidic Chips With Localized Surface Functionalization for the Co-Culture of Cancer Cells
,”
Biofabrication
,
7
(
1
), p.
015012
.
34.
Hamid
,
Q.
,
Wang
,
C.
,
Snyder
,
J.
, and
Sun
,
W.
,
2015
, “
Surface Modification of SU-8 for Enhanced Cell Attachment and Proliferation Within Microfluidic Chips
,”
ASME J. Biomed. Mater. Res., Part B
,
103
(
2
), pp.
473
484
.
35.
Snyder
,
J. E.
,
Hunger
,
P. M.
,
Wang
,
C.
,
Hamid
,
Q.
,
Wegst
,
U. G.
, and
Sun
,
W.
,
2014
, “
Combined Multi-Nozzle Deposition and Freeze Casting Process to Superimpose Two Porous Networks for Hierarchical Three-Dimensional Microenvironment
,”
Biofabrication
,
6
(
1
), p.
015007
.
36.
Snyder
,
J. E.
,
Hamid
,
Q.
,
Wang
,
C.
,
Chang
,
R.
,
Emami
,
K.
,
Wu
,
H.
, and
Sun
,
W.
,
2011
, “
Bioprinting Cell-Laden Matrigel for Radioprotection Study of Liver by Pro-Drug Conversion in a Dual-Tissue Microfluidic Chip
,”
Biofabrication
,
3
(
3
), p.
034112
.
37.
Butscher
,
A.
,
Bohner
,
M.
,
Hofmann
,
S.
,
Gauckler
,
L.
, and
Muller
,
R.
,
2011
, “
Structural and Material Approaches to Bone Tissue Engineering in Powder-Based Three-Dimensional Printing
,”
Acta Biomater.
,
7
(
3
), pp.
907
920
.
38.
Mota
,
C.
,
Puppi
,
D.
,
Chiellini
,
F.
, and
Chiellini
,
E.
,
2015
, “
Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs
,”
J. Tissue Eng. Regener. Med.
,
9
(
3
), pp.
174
190
.
39.
Rengier
,
F.
,
Mehndiratta
,
A.
,
von Tengg-Kobligk
,
H.
,
Zechmann
,
C. M.
,
Unterhinninghofen
,
R.
,
Kauczor
,
H. U.
, and
Giesel
,
F. L.
,
2010
, “
3D Printing Based on Imaging Data: Review of Medical Applications
,”
Int. J. Comput. Assisted Radiol. Surg.
,
5
(
4
), pp.
335
341
.
40.
Giannitelli
,
S. M.
,
Accoto
,
D.
,
Trombetta
,
M.
, and
Rainer
,
A.
,
2014
, “
Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering
,”
Acta Biomater.
,
10
(
2
), pp.
580
594
.
41.
Seol
,
Y. J.
,
Kang
,
H. W.
,
Lee
,
S. J.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2014
, “
Bioprinting Technology and Its Applications
,”
Eur. J. Cardiothorac. Surg.
,
46
(
3
), pp.
342
348
.
42.
Chia
,
H. N.
, and
Wu
,
B. M.
,
2015
, “
Recent Advances in 3D Printing of Biomaterials
,”
J. Biol. Eng.
,
9
(
1
), p.
4
.
43.
Hamid
,
Q.
,
Snyder
,
J.
,
Wang
,
C.
,
Timmer
,
M.
,
Hammer
,
J.
,
Guceri
,
S.
, and
Sun
,
W.
,
2011
, “
Fabrication of Three-Dimensional Scaffolds Using Precision Extrusion Deposition With an Assisted Cooling Device
,”
Biofabrication
,
3
(
3
), p.
034109
.
44.
Borenstein
,
J. T.
,
Weinberg
,
E. J.
,
Orrick
,
B. K.
,
Sundback
,
C.
,
Kaazempur-Mofrad
,
M. R.
, and
Vacanti
,
J. P.
,
2007
, “
Microfabrication of Three-Dimensional Engineered Scaffolds
,”
Tissue Eng.
,
13
(
8
), pp.
1837
1844
.
45.
Becker
,
H.
,
Carstens
,
C.
,
Elbracht
,
R.
, and
Gartner
,
C.
,
2010
, “
Opportunities and Limits of Cell-Based Assay Miniaturization in Drug Discovery
,”
Expert Opin. Drug Discovery
,
5
(
7
), pp.
673
679
.
46.
Mazzoli
,
A.
,
2013
, “
Selective Laser Sintering in Biomedical Engineering
,”
Med. Biol. Eng. Comput.
,
51
(
3
), pp.
245
256
.
47.
Leu
,
M. C.
, and
Garcia
,
D. A.
,
2014
, “
Development of Freeze-Form Extrusion Fabrication With Use of Sacrificial Material
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061014
.
48.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
49.
Khalil
,
S.
, and
Sun
,
W.
,
2009
, “
Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111002
.
50.
Zhao
,
L.
,
Yan
,
K. R. C.
,
Yao
,
R.
,
Lin
,
F.
, and
Sun
,
W.
,
2015
, “
Alternating Force Based Drop-on-Demand Microdroplet Formation and Three-Dimensional Deposition
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031009
.
51.
Starly
,
B.
,
Lau
,
W.
,
Bradbury
,
T.
, and
Sun
,
W.
,
2006
, “
Internal Architecture Design and Freeform Fabrication of Tissue Replacement Structures
,”
Comput. Aided Des.
,
38
(
2
), pp.
115
124
.
52.
Shor
,
L.
,
Guceri
,
S.
,
Chang
,
R.
,
Gordon
,
J.
,
Kang
,
Q.
,
Hartsock
,
L.
,
An
,
Y. H.
, and
Sun
,
W.
,
2009
, “
Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering
,”
Biofabrication
,
1
(
1
), p.
015003
.
53.
Mata
,
A.
,
Fleischman
,
A. J.
, and
Roy
,
S.
,
2005
, “
Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems
,”
Biomed. Microdevices
,
7
(
4
), pp.
281
293
.
54.
Sigman
,
K.
,
Ghibu
,
F.
,
Sommerville
,
W.
,
Toledano
,
B. J.
,
Bastein
,
Y.
,
Cameron
,
L.
,
Hamid
,
Q. A.
, and
Mazer
,
B.
,
1998
, “
Intravenous Immunoglobulin Inhibits IgE Production in Human B Lymphocytes
,”
J. Allergy Clin. Immun.
,
102
(
3
), pp.
421
427
.
55.
Whitesides
,
G. M.
,
Ng
,
J. M. K.
,
Gitlin
,
I.
, and
Stroock
,
A. D.
,
2002
, “
Components for Integrated Poly(Dimethylsiloxane) Microfluidic Systems
,”
Electrophoresis
,
23
(
20
), pp.
3461
3473
.
56.
Sun
,
W.
,
Chang
,
R.
, and
Nam
,
Y.
,
2008
, “
Direct Cell Writing of 3D Microorgan for in vitro Pharmacokinetic Model
,”
Tissue Eng., Part C
,
14
(
2
), pp.
157
166
.
57.
Sun
,
W.
,
Chang
,
R.
,
Emami
,
K.
, and
Wu
,
H. L.
,
2010
, “
Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model
,”
Biofabrication
,
2
(
4
), pp.
1
11
.
You do not currently have access to this content.