Mechanical structures of large-scale antennas are sheet metals connected by thousands of rivets. The antenna dimensional error after riveting often violates the limit allowed. The prediction of the global dimensional error induced by many rivet connections requires a rapid and accurate assembly deformation calculation method. Main process parameters of these local rivet connections are the local connection dimension, material property, local clamp position, rivet upsetting direction, and the hammer time-to-displacement impact, except for the riveting sequence. We neglect the process parameter uncertainties and consider that the main riveting parameters equate to a dynamic finite-element (FE) model of single rivet connection. The dynamic FE analysis result yields an inherent strain database for the riveted local parts. Then, we propose an iterative loop of static FE analyses for the global structure taking the inherent strain database and possible former static FE analysis result as the boundary conditions. The loop forms a local-to-global framework. Two examples are involved through the framework representation and realistic application. Framework advantages include: (1) a good balance between the cost and precision of dimensional error calculation; (2) the sequence simulation of all the riveting operations; and (3) supporting the further assembly process optimization to reduce the global dimensional error of the assembly with thousands of rivets.

References

References
1.
Li
,
Y.
,
Wei
,
Z.
,
Wang
,
Z.
, and
Li
,
Y.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.10.1115/1.4025421
2.
Lou
,
M.
,
Li
,
Y.
,
Li
,
Y.
, and
Chen
,
G.
,
2013
, “
Behavior and Quality Evaluation of Electroplastic Self-Piercing Riveting of Aluminum Alloy and Advanced High Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011005
.10.1115/1.4023256
3.
Wu
,
S.
,
1989
, “
Elastic-Plastic Analyses of Fastener Holes of Interference-Fit Rivets and Its Application in Fatigue Life Estimation
,”
Acta Aeronaut. Astronaut. Sin.
,
10
(
12
), pp.
484
495
.10.3321/j.issn:1000-6893.1989.12.018
4.
Zhang
,
K. F.
,
Cheng
,
H.
, and
Li
,
Y.
,
2011
, “
Riveting Process Modeling and Simulating for Deformation Analysis of Aircraft's Thin-Walled Sheet-Metal Parts
,”
Chin. J. Aeronaut.
,
24
(
3
), pp.
369
377
.10.1016/S1000-9361(11)60044-7
5.
Mackerle
,
J.
,
2003
, “
Finite Element Analysis of Fastening and Joining: A Bibliography (1990–2002)
,”
Int. J. Pressure Vessels Piping
,
80
(
4
), pp.
253
271
.10.1016/S0308-0161(03)00030-9
6.
Sfarni
,
S.
,
Bellenger
,
E.
,
Fortin
,
J.
, and
Malley
,
M.
,
2011
, “
Numerical and Experimental Study of Automotive Riveted Clutch Discs With Contact Pressure Analysis for the Prediction of Facing Wear
,”
Finite Elem. Anal. Des.
,
47
(
2
), pp.
129
141
.10.1016/j.finel.2010.08.007
7.
Bedaira
,
O. K.
, and
Eastaugh
,
G. F.
,
2007
, “
A Numerical Model for Analysis of Riveted Splice Joints Accounting for Secondary Bending and Plates Rivet Interaction
,”
Thin Walled Struct.
,
45
(
3
), pp.
251
258
.10.1016/j.tws.2007.03.001
8.
Wan
,
S. M.
,
2007
, “
Investigation of Self-Piercing Riveting With Half-Hollow Rivets
,” Ph.D. thesis, Tianjin University, Tianjin, China.
9.
He
,
X. C.
,
Pearson
,
I.
, and
Young
,
K.
,
2008
, “
Self-Pierce Riveting for Sheet Materials: State of the Art
,”
J. Mater. Process. Technol.
,
199
(
1–3
), pp.
27
36
.10.1016/j.jmatprotec.2007.10.071
10.
Hanssen
,
A. G.
,
Olovsson
,
L.
,
Porcaro
,
R.
, and
Langseth
,
M.
,
2010
, “
A Large-Scale Finite Element Point-Connector Model for Self-Piercing Rivet Connections
,”
Eur. J. Mech. A-Solids
,
29
(
4
), pp.
484
495
.10.1016/j.euromechsol.2010.02.010
11.
Iyer
,
K.
,
Hu
,
S. J.
,
Brittman
,
F. L.
,
Wang
,
P. C.
,
Hayden
,
D. B.
, and
Marin
,
S. P.
,
2005
, “
Fatigue of Single and Double-Rivet Self-Piercing Riveted Lap Joints
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
11
), pp.
997
1007
.10.1111/j.1460-2695.2005.00938.x
12.
Cai
,
W.
,
Wang
,
P.
, and
Yang
,
W.
,
2005
, “
Assembly Dimensional Prediction for Self-Piercing Riveted Aluminum Panels
,”
Int. J. Mach. Tools Manuf.
,
45
(
6
), pp.
695
704
.10.1016/j.ijmachtools.2004.09.023
13.
Masters
,
I.
,
Fan
,
X.
,
Roy
,
R.
, and
Williams
,
D.
,
2011
, “
Modelling Distortion Induced in an Assembly by the Self Piercing Rivet Process
,”
Proc. IMechE Part B: J. Eng. Manuf.
,
226
(
B2
), pp.
300
312
.10.1177/0954405411414105
14.
Szymczyk
,
E.
,
Jachimowicz
,
J.
,
Sawinski
,
G.
, and
Derewonko
,
A.
,
2009
, “
Influence of Technological Imperfections on Residual Stress Fields in Riveted Joints
,”
Procedia Eng.
,
1
(
1
), pp.
59
62
.10.1016/j.proeng.2009.06.016
15.
Aman
,
F.
,
Cheraghi
,
S. H.
,
Krishnan
,
K. K.
, and
Lankarani
,
H.
,
2013
, “
Study of the Impact of Riveting Sequence, Rivet Pitch, and Gap Between Sheets on the Quality of Riveted Lap Joints Using Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
545
562
.10.1007/s00170-012-4504-6
16.
Blanchot
,
V.
, and
Daidie
,
A.
,
2006
, “
Riveted Assembly Modeling: Study and Numerical Characterisation of a Riveting Process
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
201
209
.10.1016/j.jmatprotec.2006.06.005
17.
Liu
,
Y. S.
,
He
,
X. D.
,
Shao
,
X. J.
,
Jun
,
L.
, and
Zhufeng
,
Y.
,
2010
, “
Analytical and Experimental Investigation of Fatigue and Fracture Behaviors for Anti-Double Dog-Bone Riveted Joints
,”
Eng. Failure Anal.
,
17
(
6
), pp.
1447
1456
.10.1016/j.engfailanal.2010.05.006
18.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1–2
), pp.
181
192
.10.1016/S0045-7825(97)00139-4
19.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
,
2001
, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
,
38
(
14
), pp.
2335
2385
.10.1016/S0020-7683(00)00167-0
20.
Jenny
,
P.
,
Lee
,
S. H.
, and
Tchelepi
,
H. A.
,
2003
, “
Multi-Scale Finite-Volume Method for Elliptic Problems in Subsurface Flow Simulation
,”
J. Comput. Phys.
,
187
(
1
), pp.
47
67
.10.1016/S0021-9991(03)00075-5
21.
ANSYS, 2006, ANSYS Advanced Analysis Techniques Guide.
22.
SIMULIA
,
2011
, abaqus Example Problems Manual Version 6.11.
23.
Li
,
L.
,
Wang
,
J.
,
Lu
,
Z.
, and
Yue
,
Z.
,
2007
, “
A Load Interpolation Transfer Method Among Disciplines in Parametric Space
,”
J. Aerosp. Power
,
22
(
7
), pp.
1050
1054
.10.3969/j.issn.1000-8055.2007.07.005
24.
Grosse
,
I. R.
,
Huang
,
L.
,
Davis
,
J. L.
, and
Cullinane
,
D.
,
2014
, “
A Multilevel Hierarchical Finite Element Model for Capillary Failure in Soft Tissue
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081010
.10.1115/1.4027730
25.
Liu
,
S. C.
, and
Hu
,
J. S.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.10.1115/1.2831115
26.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.10.1115/1.2714570
27.
Wang
,
H.
, and
Ceglarek
,
D.
,
2009
, “
Variation Propagation Modeling and Analysis at Preliminary Design Phase for Multi-Station Assembly Systems
,”
Assem. Autom.
,
29
(
2
), pp.
154
166
.10.1108/01445150910945606
28.
Cheng
,
H.
,
Li
,
Y.
,
Zhang
,
K.
,
Mu
,
W.
, and
Liu
,
B.
,
2011
, “
Variation Modeling of Aeronautical Thin-Walled Structures With Multi-State Riveting
,”
J. Manuf. Syst.
,
30
(
2
), pp.
101
115
.10.1016/j.jmsy.2011.05.004
29.
Zeng
,
Q.
, and
Ehmann
,
K.
,
2012
, “
Error Modeling of a Parallel Wedge Precision Positioning Stage
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061005
.10.1115/1.4007640
30.
Ueda
,
Y.
,
Mumkawa
,
H.
,
Gu
,
S.
,
Okumoto
,
Y.
, and
Kamichika
,
R.
,
1992
, “
Simulation of Welding Deformation for Accurate Ship Assembling In-Plane Deformation of Butt Welded Plate
,”
J. Soc. Nav. Archit. Jpn.
,
171
(
1
), pp.
395
404
.10.2534/jjasnaoe1968.1992.395
31.
Hidekazu
,
M.
,
Luo
,
Y.
, and
Ueda
,
Y.
,
1996
, “
Prediction of Welding Deformation and Residual Stress by Elastic FEM Based on Inherent Strain
,”
J. Soc. Nav. Archit. Jpn.
,
180
(
1
), pp.
739
751
.
32.
Deng
,
D.
, and
Murakawa
,
H.
,
2008
, “
Prediction of Welding Distortion and Residual Stress in a Thin Plate Butt-Welded Joint
,”
Comput. Mater. Sci.
,
43
(
2
), pp.
353
365
.10.1016/j.commatsci.2007.12.006
33.
Park
,
J. U.
,
An
,
G.
,
Woo
,
W. C.
,
Choi
,
J.-H.
, and
Ma
,
N.
,
2014
, “
Residual Stress Measurement in an Extra Thick Multi-Pass Weld Using Initial Stress Integrated Inherent Strain Method
,”
Mar. Struct.
,
39
(
1
), pp.
424
437
.10.1016/j.marstruc.2014.10.002
34.
Nakacho
,
K.
,
Ogawa
,
N.
,
Ohta
,
T.
, and
Nayama
,
M.
,
2014
, “
Inherent-Strain-Based Theory of Measurement of Three-Dimensional Residual Stress Distribution and Its Application to a Welded Joint in a Reactor Vessel
,”
ASME J. Pressure Vessel Technol.
,
136
(
3
), p.
031401
.10.1115/1.4026496
35.
Kim
,
T. J.
,
Jang
,
B. S.
, and
Kang
,
S. W.
,
2015
, “
Welding Deformation Analysis Based on Improved Equivalent Strain Method Considering the Effect of Temperature Gradients
,”
Int. J. Nav. Archit. Ocean Eng.
,
7
(
1
), pp.
157
173
.10.1515/ijnaoe-2015-0012
36.
Ni
,
J.
,
Tang
,
W. C.
, and
Xing
,
Y.
, “
Assembly Process Optimization for Reducing the Dimensional Error of Antenna Assembly With Abundant Rivets
,”
J. Intell. Manuf.
(published online).10.1007/s10845-015-1105-x
37.
Ni
,
J.
,
Tang
,
W. C.
, and
Xing
,
Y.
,
2014
, “
Three-Dimensional Precision Analysis With Rigid and Compliant Motions for Sheet Metal Assembly
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
805
819
.10.1007/s00170-014-5832-5
38.
Hallquist
,
J. O.
,
2007
,
LS-DYNA Keyword User's Manual, Version 971
,
Livermore Software Technology Corporation
,
Livermore, CA
.
39.
Cowper
,
G.
, and
Symonds
,
P.
,
1957
, “
Strain Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,” Brown University Division of Applied Mathematics, Technical Report No. DTIC Document, Technical Report No. 28.
40.
Hallquist
,
J. O.
,
1993
,
LS-DYNA3D Theoretical Manual
,
Livermore Software Technology Corporation
, Livermore, CA.
This content is only available via PDF.
You do not currently have access to this content.