The depletion of native oil components from semisynthetic metalworking fluids (MWFs) during microfiltration is caused in part by the deposition of the MWF components on the pore walls, a mechanism that also results in the decline of the filtration rate of MWF over time. Simulated experiments with a fluid dynamic model that considers interparticle and particle–wall interactions show that membrane pore walls' surface charge density can be tailored to reduce system flux decline. However, results of the model show that the tailored membrane pore design may still see depletion of the oil components from the filtered MWF due to oil components being trapped in a suspended position above the pore mouth.

References

References
1.
Belfort
,
G.
,
Davis
,
R. H.
, and
Zydney
,
A. L.
,
1994
, “
The Behavior of Suspensions and Macromolecular Solutions in Cross-Flow Microfiltration
,”
J. Membr. Sci.
,
96
(
1–2
), pp.
1
58
.
2.
Byers
,
J. P.
,
2006
,
Metalworking Fluids
,
CRC/Taylor & Francis
,
Boca Raton, FL
.
3.
Sheng
,
P. S.
, and
Oberwalleney
,
S.
,
1997
, “
Life-Cycle Planning of Cutting Fluids—A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
791
800
.
4.
Eppert
,
J. J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Rajagopalan
,
N.
,
2003
, “
The Effect of Chip Adsorption on Selective Depletion From a Multi-Component Synthetic Metalworking Fluid
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
703
708
.
5.
Wentz
,
J.
,
2008
, “
Fouling of Aluminum Oxide Microfiltration Membranes by Semi-Synthetic Metalworking Fluids
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
6.
Skerlos
,
S. J.
,
2000
, “
Microfiltration of Synthetic Metalworking Fluids Using Aluminum Oxide Membranes
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
7.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2008
, “
Dynamic Simulations of Alumina Membrane Fouling From Recycling of Semisynthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061015
.
8.
Mullet
,
M.
,
Fievet
,
P.
,
Reggiani
,
J.
, and
Pagetti
,
J.
,
1997
, “
Surface Electrochemical Properties of Mixed Oxide Ceramic Membranes: Zeta-Potential and Surface Charge Density
,”
J. Membr. Sci.
,
123
(
2
), pp.
255
265
.
9.
Ritchie
,
S.
,
Bachas
,
L.
,
Olin
,
T.
,
Sikdar
,
S.
, and
Bhattacharyya
,
D.
,
1999
, “
Surface Modification of Silica- and Cellulose-Based Microfiltration Membranes With Functional Polyamino Acids for Heavy Metal Sorption
,”
Langmuir
,
15
(
19
), pp.
6346
6357
.
10.
Yu
,
B. Y.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2012
, “
Three-Dimensional Simulation of Cross-Flow Microfilter Fouling in Tortuous Pore Profiles With Semisynthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061002
.
11.
Yu
,
B.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Wentz
,
J. E.
,
2014
, “
Investigation of Flux Decline in Tortuous Pore Structures Via Three-Dimensional Simulation of Cross-Flow Microfilter Fouling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031001
.
12.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
, V
. D.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
746
752
.
13.
Ham
,
S.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Wentz
,
J.
,
2010
, “
The Impact of Surface Forces on Particle Flow and Membrane Fouling in the Microfiltration of Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011006
.
14.
Jubery
,
T. Z.
,
Kapoor
,
S. G.
, and
Wentz
,
J. E.
,
2015
, “
Effect of Interparticle Interaction on Particle Deposition in a Crossflow Microfilter
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011001
.
15.
Jubery
,
T. Z.
,
Prabhu
,
A. S.
,
Kim
,
M. J.
, and
Dutta
,
P.
,
2012
, “
Modeling and Simulation of Nanoparticle Separation Through a Solid-State Nanopore
,”
Electrophoresis
,
33
(
2
), pp.
325
333
.
16.
Kirby
,
B.
,
2010
,
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University Press
,
New York
.
17.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic Press
,
Burlington, MA
.
18.
Simeonov
,
J. A.
, and
Calantoni
,
J.
,
2012
, “
Modeling Mechanical Contact and Lubrication in Direct Numerical Simulations of Colliding Particles
,”
Int. J. Multiphase Flow
,
46
, pp.
38
53
.
19.
Lin
,
S. H.
, and
Wiesner
,
M. R.
,
2012
, “
Theoretical Investigation on the Steric Interaction in Colloidal Deposition
,”
Langmuir
,
28
(
43
), pp.
15233
15245
.
20.
Chen
,
M. W.
, and
McLaughlin
,
J. B.
,
1995
, “
A New Correlation for the Aerosol Deposition Rate in Vertical Ducts
,”
J. Colloid Interface Sci.
,
169
(
2
), pp.
437
455
.
21.
Kosinski
,
P.
, and
Hoffmann
,
A. C.
,
2009
, “
Extension of the Hard-Sphere Particle–Wall Collision Model to Account for Particle Deposition
,”
Phys. Rev. E
,
79
(
6
), p.
061302
.
22.
Crowe
,
C. T.
,
2012
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
23.
Manor
,
O.
,
Chau
,
T. T.
,
Stevens
,
G. W.
,
Chan
,
D. Y. C.
,
Grieser
,
F.
, and
Dagastine
,
R. R.
,
2012
, “
Polymeric Stabilized Emulsions: Steric Effects and Deformation in Soft Systems
,”
Langmuir
,
28
(
10
), pp.
4599
4604
.
You do not currently have access to this content.