This paper presents a method to reduce surface variation in face milling processes based on high-definition metrology (HDM) measurements. Our previous research has found and established the relations between surface variation patterns, cutting forces, and process variables. Based on the findings, this paper compares potential machining methods and finds that the approaches of varying feed rate and lateral cutter path planning are most feasible for surface variation control. By combining the two approaches, an algorithm is developed to reduce cutting force variation along the feed direction and circumferential direction, respectively, thereby reducing the surface variation. The varying feed method can effectively eliminate the surface variation along the feed direction, while the optimal cutter path approach balances the cutting loads on the cutter and contributes to reducing cutting force variation along feed direction. Case studies were conducted based on a cutting experiment to demonstrate that the proposed method can improve the surface flatness by 25%. The cutter path adjustment algorithm was also implemented in an automotive engine plant leading to 15–25% improvement in surface flatness.

References

References
1.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2013
, “
Characterization of Cutting Force Induced Surface Shape Variation in Face Milling Using High-Definition Metrology
,”
ASME J. Manuf. Eng. Sci.
,
135
(
4
), pp.
1
35
.
2.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2014
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
.
3.
Du
,
S.
,
Liu
,
C.
, and
Huang
,
D.
,
2014
, “
A Shearlet-Based Separation Method of 3D Engineering Surface Using High Definition Metrology
,”
Precis. Eng.
,
40
, pp.
55
73
.
4.
Wang
,
M.
,
Xi
,
L.
, and
Du
,
S.
,
2014
, “
3D Surface Form Error Evaluation Using High Definition Metrology
,”
Precis. Eng.
,
38
(
1
), pp.
230
236
.
5.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2014
, “
Modeling Cutter Tilt and Cutter-Spindle Stiffness for Machine Condition Monitoring in Face Milling Using High-Definition Metrology
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
1
29
.
6.
Chu
,
C. N.
,
Kim
,
S. Y.
,
Lee
,
J. M.
, and
Kim
,
B. H.
,
1997
, “
Feed-Rate Optimization of Ball End Milling Considering Local Shape Features
,”
CIRP Ann. - Manuf. Technol.
,
46
(
1
), pp.
433
436
.
7.
Lim
,
E. E. M.
, and
Menq
,
C.-H.
,
1997
, “
Integrated Planning for Precision Machining of Complex Surfaces. Part 1: Cutting-Path and Feed Rate Optimization
,”
Int. J. Mach. Tools Manuf.
,
37
(
I
), pp.
61
75
.
8.
Ko
,
J. H.
, and
Cho
,
D.-W.
,
2004
, “
Feed Rate Scheduling Model Considering Transverse Rupture Strength of a Tool for 3D Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1047
1059
.
9.
Tai
,
B. L.
,
Stephenson
,
D.
, and
Shih
,
A. J.
,
2011
, “
Improvement of Surface Flatness in Face Milling Based on 3-D Holographic Laser Metrology
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
483
490
.
10.
De Meter
,
E. C.
,
1995
, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Eng. Ind.
,
177
(
2
), pp.
186
193
.
11.
De Meter
,
E. C.
,
1998
, “
Fast Support Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1221
1239
.
12.
Nee
,
A. Y. C.
,
Kumar
,
A. S.
, and
Tao
,
Z. J.
,
2000
, “
An Intelligent Fixture With a Dynamic Clamping Scheme
,”
Proc. Inst. Mech. Eng., Part B
,
214
(
3
), pp.
183
196
.
13.
Kulankara
,
K.
,
Satyanarayana
,
S.
, and
Melkote
,
S. N.
,
2002
, “
Iterative Fixture Layout and Clamping Force Optimization Using the Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
119
125
.
14.
Deng
,
H.
, and
Melkote
,
S. N.
,
2006
, “
Determination of Minimum Clamping Forces for Dynamically Stable Fixturing
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
847
857
.
15.
Kaya
,
N.
,
2006
, “
Machining Fixture Locating and Clamping Position Optimization Using Genetic Algorithms
,”
Comput. Ind.
,
57
(
2
), pp.
112
120
.
16.
Huang
,
Y.
, and
Hoshi
,
T.
,
2000
, “
Improvement of Flatness Error in Milling Plate-Shaped Workpiece by Application of Side-Clamping Force
,”
Precis. Eng.
,
24
(
4
), pp.
364
370
.
17.
Chen
,
W.
,
Ni
,
L.
, and
Xue
,
J.
,
2007
, “
Deformation Control Through Fixture Layout Design and Clamping Force Optimization
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
860
867
.
18.
Huang
,
Y.
, and
Hoshi
,
T.
,
2001
, “
Optimization of Fixture Design With Consideration of Thermal Deformation in Face Milling
,”
J. Manuf. Syst.
,
19
(
5
), pp.
332
340
.
19.
Li
,
Z.
, and
Zhu
,
L.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.
20.
Tai
,
B. L.
,
Wang
,
H.
,
Nguyen
,
H.
,
Hu
,
S. J.
, and
Shih
,
A.
,
2012
, “
Surface Variation Reduction for Face Milling Based on High-Definition Metrology
,”
ASME
, Paper No. MSEC2012-7208.
21.
Rao
,
P.
,
Bukkapatnam
,
S.
,
Beyca
,
O.
,
Kong
,
Z.
, and
Komanduri
,
R.
,
2014
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021008
.
22.
Suriano
,
S.
,
Wang
,
H.
,
Hu
,
S. J.
, and
Sekhar
,
P. K.
,
2014
, “
Progressive Measurement and Monitoring for Multi-Resolution Data Considering Spatial and Cross-Correlation
,”
IIE Trans. Qual. Reliab.
, Vol. 7, p. 1 (published online).
23.
Karandikar
,
J.
,
Schmitz
,
T.
, and
Abbas
,
A.
,
2014
, “
Application of Bayesian Inference to Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021017
.
You do not currently have access to this content.