In the present work, an attempt has been made to study the tribological properties of Al–Al2O3 composites (under dry sliding conditions) prepared via fused deposition modeling assisted investment casting (FDMAIC) route. Initially, two proportions/mixtures—nylon60%–Al30%–Al2O310% and nylon60%–Al 28%–Al2O312%—were fabricated in the form of fused deposition modeling (FDM) filament on a single screw extruder of L/D 20. Finally, the alternative filaments were used as feedstock filaments of existing FDM system for the fabrication of reinforced investment casting (IC) sacrificial patterns. The effect of process parameters (namely, filament proportion (FP), volume of reinforced FDM pattern, density of FDM pattern (DP), barrel finishing (BF) time, barrel finishing media weight (BFW), and number of IC slurry layers (NSL)) on tribological properties of Al–Al2O3 composites has been studied and optimized using Taguchi L18 OA. Tribotests were performed on pin-on-disk type tribotester at a sliding speed: 239 rpm, sliding diameter-80 mm, load-19.61 N, and time-10 min. Wear was measured both in terms of length and weight loss. Finally, the composites developed were characterized by using optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractogram (XRD).

References

References
1.
Surappa
,
M. K.
,
2006
, “
Aluminium Matrix Composites Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
.
2.
Mohan
,
S.
, and
Srivastava
,
S.
,
2006
, “
Surface Behaviour of as Cast Al–Fe Intermetallic Composites
,”
Tribol. Lett.
,
22
(
1
), pp.
45
51
.
3.
Sajjadi
,
S. A.
,
Ezatpour
,
H. R.
, and
Parizi
,
M. T.
,
2012
, “
Comparison of Microstructure and Mechanical Properties of A356 Aluminum Alloy/Al2O3 Composites Fabricated by Stir and Compo-Casting Processes
,”
Mater. Des.
,
34
, pp.
106
111
.
4.
Sajjadi
,
S. A.
,
Ezatpour
,
H. R.
, and
Beygi
,
H.
,
2010
, “
Microstructure and Mechanical Properties of Al–Al2O3 Micro and Nano Composites Fabricated by Stir Casting
,”
14th National Conference on Materials Science and Engineering
, Tehran, Iran, pp.
325
332
.
5.
Ralph
,
B.
,
Yuen
,
H. C.
, and
Lee
,
W. B.
,
1997
, “
The Processing of Metal Matrix Composites–An Overview
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
339
353
.
6.
Harrigan
,
W. C.
,
1998
, “
Commercial Processing of Metal Matrix Composites
,”
Mater. Sci. Eng.-A
,
244
(
1
), pp.
75
79
.
7.
Degischer
,
H. P.
,
1997
, “
Innovative Light Metals: Metal Matrix Composites and Foamed Aluminium
,”
Mater. Des.
,
18
(
4–6
), pp.
221
226
.
8.
Amano
,
R. S.
,
Marek
,
S.
,
Schultz
,
B. F.
, and
Rohatgi
,
P. K.
,
2014
, “
Laser Engineered Net Shaping Process for 316l/15% Nickel Coated Titanium Carbide Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051007
.
9.
Mazahery
,
A.
,
Abdizadeh
,
H.
, and
Baharvandi
,
R.
,
2009
, “
Development of High-Performance A356/Nano-Al2O3 Composites
,”
Mater. Sci. Eng.-A
,
518
(
1–2
), pp.
61
64
.
10.
Previtali
,
B.
,
Pocci
,
D.
, and
Taccardo
,
C.
,
2008
, “
Application of Traditional IC Process to Aluminium Matrix Composites
,”
Composites Part (A)
,
39
(
10
), pp.
1606
1617
.
11.
ASTM
,
1988
,
Metals Handbook: Casting
, Vol.
15
,
ASM International
, Metals Park, OH.
12.
Rooks
,
B.
,
2012
, “
Rapid Tooling for Casting Prototypes
,”
Assemb. Automation
,
22
(
1
), pp.
40
45
.
13.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.
14.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
15.
Jamiolahmadi
,
S.
, and
Barari
,
A.
,
2014
, “
Surface Topography of Additive Manufacturing Parts Using a Finite Difference Approach
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061009
.
16.
Kakde
,
N. U.
, and
Tumane
,
A. S.
,
2012
, “
Development of Customized Innovative Product Using Fused Deposition Modeling Technique of Rapid Prototyping and Investment Casting
,”
National Conference on Innovative Paradigms in Engineering and Technology
, NY, pp.
27
30
.
17.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Aided Des.
,
30
(
5
), pp.
343
356
.
18.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
385
388
.
19.
Armillotta
,
A.
,
2006
, “
Assessment of Surface Quality on Textured FDM Prototypes
,”
Rapid Prototyping J.
,
12
(
1
), pp.
35
41
.
20.
Boschetto
,
V. G.
, and
Veniali
,
F.
,
2012
, “
Modelling Micro Geometrical Profiles in Fused Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
945
956
.
21.
Hossain
,
M. S.
,
Espalin
,
D.
,
Ramos
,
J.
,
Perez
,
M.
, and
Wicker
,
R.
,
2014
, “
Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061002
.
22.
Kumar
,
P.
,
Ahuja
,
I. P. S.
, and
Singh
,
R.
,
2012
, “
Application of Fusion Deposition Modelling for Rapid Investment Casting–A Review
,”
Int. J. Mater. Eng. Innovation
,
3
(
3/4
), pp.
204
227
.
23.
Masood
,
S. H.
,
1996
, “
Intelligent Rapid Prototyping With Fused Deposition Modelling
,”
Rapid Prototype J.
,
2
(
1
), pp.
24
32
.
24.
Masood
,
S. H.
, and
Song
,
W. Q.
,
2004
, “
Development of New Metal/Polymer for Rapid Tooling Using Fused Deposition Modelling
,”
Mater. Des.
,
25
(
7
), pp.
587
594
.
25.
Masood
,
S. H.
,
Nikzad
,
M.
,
Sbraski
,
I.
, and
Groth
,
A.
,
2007
, “
Thermo Mechanical Properties of a Metal-Filled Polymer Composite for Fused Deposition Modelling Applications
,” 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, pp.
319
324
.
26.
Nikzad
,
M.
,
Masood
,
S. H.
,
Sbarski
,
I.
, and
Groth
,
A.
,
2009
, “
A Study of Melt Flow Analysis of ABS-Iron Composite in Fused Deposition Modelling Process
,”
Tsinghua Sci. Technol. J.
,
14
(
1
), pp.
29
37
.
27.
Sa'ude
,
N.
,
Masood
,
S. H.
,
Nikzad
,
M.
,
Ibrahim
,
M.
, and
Ibrahim
,
M. H. I.
,
2013
, “
Dynamic Mechanical Properties of Copper-ABS Composite for FDM Feedstock
,”
Int. J. Eng. Res. Appl.
,
3
(
3
), pp.
257
1263
.
28.
Gray
,
R. W.
,
Baird
,
D. G.
, and
Jan
,
H. B.
,
1998
, “
Effects of Processing Conditions on Short TLCP Fibre Reinforced FDM Parts
,”
Rapid Prototyping J.
,
4
(
1
), pp.
14
25
.
29.
Singh, R.,
2013
, “
A Wear Resistant Part Having Metal Matrix Composite (MMC) and Process for Preparing the Metal Matrix Composite
,” Patent File No. 2847/DEL/2013.
30.
Jasim
,
K. M.
, and
Dwarakadasa
,
E. S.
,
1987
, “
Wear in Al–Si Alloys Under Dry Sliding Conditions
,”
Wear
,
119
(
1
), pp.
119
130
.
31.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technologym
,
10
(
6
), pp.
513
517
.
32.
Jebin
,
V. D.
,
Shivalingappa
,
D.
, and
Rino
,
J. J.
,
2013
, “
Wear Behavior of AL6063-Alumina Metal Matrix Composite
,”
Int. J. Sci. Res.
,
2
(
3
), pp.
446
449
.
33.
Lakshminarayan
,
A. K.
, and
Balasubramanian
,
V.
,
2008
, “
Process Parameters Optimization for Friction Stir Welding of RDE-40 Aluminium Alloy Using Taguchi Technique
,”
Trans. Non-Ferrous Met. Soc. China
,
18
(
3
), pp.
548
554
.
34.
Singh
,
S.
, and
Singh
,
R.
,
2015
, “
Development of Aluminium Matrix Composite Using Hybrid FDM Pattern for Investment Casting Applications
,”
Int. J. Mech. Eng. Mater. Sci.
,
8
(
1
), pp.
1
6
.
35.
Singh
,
R.
, and
Singh
,
G.
,
2015
, “
Cast Component Hardness Comparison for Investment Casting Prepared With Wax and ABS Patterns
,”
Trans. Indian Inst. Met.
,
68
(
1
), pp.
17
21
.
You do not currently have access to this content.