The pore sizes affected by different drilling parameters during high power density laser and electron beam welding processes are theoretically determined in this study. The drilling parameters include incident energy absorbed by the mixture in the keyhole, radius, and Mach number at the base, drilling speed, and location of the shock wave or surrounding pressure. The factors affecting the pore sizes are still lacking, even though porosity often occurs and limits the widespread industrial application of keyhole mode welding. In order to determine the pore shape, this study introduces the equations of state at the times when the keyhole is about to be enclosed and when the temperature drops to melting temperature. The gas pressure, temperature, and volume required at the time when the keyhole is about to be closed are determined by calculating the compressible flow of the vapor–liquid dispersion in a vertical keyhole with varying cross sections, paying particular attention to the transition between annular and slug flows. It is found that the final pore size decreases as absorbed energy, radius, and Mach number at the base increase, and decreases axial location of the shock wave or higher surrounding pressure for the keyhole containing a supersonic mixture. For a subsonic mixture in the keyhole, the final pore size decreases as released energy, radius, and Mach number at the base increase. This work provides an exploratory and systematical investigation of the pore size during keyhole mode welding.

References

References
1.
Arata
,
Y.
,
1986
,
Plasma, Electron and Laser Beam Technology
,
American Society for Metals
,
Metals Park, OH
.
2.
Kou
,
S.
,
2003
,
Welding Metallurgy
,
2nd ed.
,
Wiley
,
New York
.
3.
DebRoy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion Welding
,”
Rev. Mod. Phys.
,
67
(
1
), pp.
85
112
.
4.
Yilbas
,
B. S.
, and
Akhtar
,
S.
,
2013
, “
Laser Welding of AISI 316 Steel: Microstructural and Stress Analysis
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031018
.
5.
Zhao
,
H.
, and
DebRoy
,
T.
,
2001
, “
Pore Formation During Laser Beam Welding of Die-Cast Magnesium Alloy AM60B—Mechanism and Remedy
,”
Weld. J.
,
80
(
8
), pp.
204s
210s
.
6.
Elmer
,
J. W.
,
Vaja
,
J.
,
Pong
,
R.
,
Gooch
,
T. H.
, and
Barth
,
H. D.
,
2015
, “
The Effect of Shielding Gas on Laser Weld Porosity
,”
Weld. J.
(to be published).
7.
Girard
,
K.
,
Jouvard
,
J. M.
, and
Naudy
,
Ph.
,
2000
, “
Study of Voluminal Defects Observed in Laser Spot Welding of Tantalum
,”
J. Phys. D: Appl. Phys.
,
33
(
21
), pp.
2815
2824
.
8.
Chalmers
,
B.
,
1959
, “
How Water Freezes
,”
Sci. Am.
,
200
(
2
), pp.
114
122
.
9.
Wei
,
P. S.
,
1999
, “
Pore Formation in Metals Processing—Research Trends
,”
Trends in Heat, Mass & Momentum Transfer, Research Trends, Poojapura, Trivandrum, India
, Vol.
5
, pp.
101
125
.
10.
Wei
,
P. S.
,
Huang
,
C. C.
, and
Lee
,
K. W.
,
2003
, “
Nucleation of Bubbles on a Solidification Front-Experiment and Analysis
,”
Metall. Mater. Trans. B
,
34
(
3
), pp.
321
332
.
11.
Pastor
,
M.
,
Zhao
,
H.
,
Martukanitz
,
R. P.
, and
DebRoy
,
T.
,
1999
, “
Porosity, Underfill and Magnesium Loss During Continuous Wave Nd:YAG Laser Welding of Thin Plates of Aluminum Alloys 5182 and 5754
,”
Weld. J.
,
78
(
6
), pp.
207s
216s
.
12.
Katayama
,
S.
,
Matsunawa
,
A.
, and
Kojima
,
K.
,
1998
, “
Laser Weldability of Aluminum Alloys (2nd Report): Defect Formation Conditions and Causes
,”
Weld. Int.
,
12
, pp.
44
59
.
13.
Pastor
,
M.
,
Zhao
,
H.
, and
DebRoy
,
T.
,
2001
, “
Pore Formation During Continuous Wave Nd:YAG Laser Welding of Aluminum for Automotive Applications
,”
Weld. Int.
,
15
(
4
), pp.
275
281
.
14.
Matsunawa
,
A.
,
Kim
,
J. D.
,
Seto
,
N.
,
Mizutani
,
M.
, and
Katayama
,
S.
,
1998
, “
Dynamics of Keyhole and Molten Pool in Laser Welding
,”
J. Laser Appl.
,
10
(
6
), pp.
247
254
.
15.
Kaplan
,
A. F. H.
,
Mizutani
,
M.
,
Katayama
,
S.
, and
Matsunawa
,
A.
,
2002
, “
Unbounded Keyhole Collapse and Bubble Formation During Pulsed Laser Interaction With Liquid Zinc
,”
J. Phys. D: Appl. Phys.
,
35
(
11
), pp.
1218
1228
.
16.
Schauer
,
D. A.
, and
Giedt
,
W. H.
,
1978
, “
Prediction of Electron Beam Welding Spiking Tendency
,”
Weld. J.
,
57
(
7
), pp.
189s
195s
.
17.
Seto
,
N.
,
Katayama
,
S.
, and
Matsunawa
,
A.
,
2001
, “
Porosity Formation Mechanism and Suppression Procedure in Laser Welding of Aluminum Alloys
,”
Weld. Int.
,
15
(
3
), pp.
191
202
.
18.
Klemens
,
P. G.
,
1976
, “
Heat Balance and Flow Conditions for Electron Beam and Laser Welding
,”
J. Appl. Phys.
,
47
(
5
), pp.
2165
2174
.
19.
Zhou
,
J.
, and
Tsai
,
H. L.
,
2007
, “
Porosity Formation and Prevention in Pulsed Laser Welding
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1014
1024
.
20.
Bransch
,
H. N.
,
Weckman
,
D. C.
, and
Kerr
,
H. W.
,
1994
, “
Effects of Pulse Shaping on Nd: YAG Spot Welds in Austenitic Stainless Steel
,”
Weld. J.
,
73
(
6
), pp.
141s
151s
.
21.
Katayama
,
S.
,
Kohsaka
,
S.
,
Mizutani
,
M.
,
Nishizawa
,
K.
, and
Matsunawa
,
A.
,
1993
, “
Pulse Shape Optimization for Defect Prevention in Pulsed Laser Welding of Stainless Steels
,” ICALEO, pp.
487
497
.
22.
Zhang
,
X.
,
Chen
,
W.
,
Bao
,
G.
, and
Zhao
,
L.
,
2004
, “
Suppresion of Porosity in Beam Weaving Laser Welding
,”
Sci. Technol. Weld. Joining
,
9
(
4
), pp.
374
376
.
23.
Shilov
,
G. A.
,
Akop'yants
,
K. A.
, and
Kasatkin
,
O. G.
,
1983
, “
Effects of the Frequency and Diameter of Circular Travel by an Electron Beam on the Penetration of Metal During Electron-Beam Welding
,”
Avtom. Svarka
,
36
(
8
), pp.
25
28
.
24.
Akop'yants
,
K. S.
,
1984
, “
Preventing Weld Root Defects From Forming During Electron-Beam Welding
,”
Avtom. Svarka
,
37
(
6
), pp.
59
61
.
25.
Kim
,
J. S.
,
Watanabe
,
T.
, and
Yoshida
,
Y.
,
1995
, “
Effect of the Beam-Defocusing Characteristics on Porosity Formation in Laser Welding
,”
J. Mater. Sci. Lett.
,
14
(
22
), pp.
1624
1626
.
26.
Hayashi
,
T.
,
Matsubayashi
,
K.
,
Katayama
,
S.
,
Abe
,
N.
,
Matsunawa
,
A.
, and
Ohmori
,
A.
,
2002
, “
Reduction Mechanism of Porosity in Tandem Twin-Spot Laser Welding of Stainless Steel
,”
Q. J. Jpn. Weld. Soc.
,
20
(
2
), pp.
228
236
.
27.
Katayama
,
S.
,
Uchiumi
,
S.
,
Mizutani
,
M.
,
Wang
,
J.
, and
Fujii
,
K.
,
2007
, “
Penetration and Porosity Prevention Mechanism in YAG Laser-MIG Hybrid Welding
,”
Weld. Int.
,
21
(
1
), pp.
25
31
.
28.
Kamimuki
,
K.
,
Inoue
,
T.
,
Yasuda
,
K.
,
Muro
,
M.
,
Nakabayashi
,
T.
, and
Matsunawa
,
A.
,
2002
, “
Prevention of Welding Defect by Side Gas Flow and Its Monitoring Method in Continuous Wave Nd:YAG Laser Welding
,”
J. Laser Appl.
,
14
(
3
), pp.
136
145
.
29.
Tsukamoto
,
S.
,
Kawaguchi
,
I.
,
Arakane
,
G.
,
Kamata
,
T.
, and
Maekawa
,
K.
,
2000
, “
Suppression of Welding Defects in Deep Penetration CO2 Laser Welding
,” ICALEO, Section C, pp.
7
15
.
30.
Katayama
,
S.
,
Kobayashi
,
Y.
,
Seto
,
N.
,
Mizutani
,
M.
, and
Matsunawa
,
A.
,
2000
, “
Effect of Vacuum on Penetration and Defects in Laser Welding
,” Section C, ICALEO, pp.
182
191
.
31.
Masumoto
,
I.
,
Kutsuna
,
M.
, and
Yasuda
,
K.
,
1982
, “
Fundamental Study of High Power Electron Beam Welding (Report 2)—Effect of Beam Oscillation on Porosity Elimination
,”
J. Jpn. Weld. Soc.
,
51
(
1
), pp.
27
32
.
32.
Kern
,
M.
,
Berger
,
P.
, and
Hugel
,
H.
,
2000
, “
Magneto-Fluid Dynamic Control of Seam Quality in Laser Beam Welding
,”
Weld. J.
,
79
(
3
), pp.
72s
78s
.
33.
Zhou
,
J.
, and
Tsai
,
H. L.
,
2007
, “
Effects of Electromagnetic Force on Melt Flow and Porosity Prevention in Pulsed Laser Keyhole Welding
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2217
2235
.
34.
Abbott
,
D. H.
, and
Albright
,
C. E.
,
1994
, “
CO2 Shielding Gas Effects in Laser Welding Mild Steel
,”
J. Laser Appl.
,
6
(
2
), pp.
69
80
.
35.
Miyazaki
,
Y.
,
Furusako
,
S.
, and
Ohara
,
M.
,
2002
, “
Porosity Formation in Laser Welding of Steel Sheets
,”
Weld. Int.
,
16
(
1
), pp.
26
37
.
36.
Seto
,
N.
,
Katayama
,
S.
, and
Matsunawa
,
A.
,
2002
, “
Porosity Formation Mechanism and Reduction Method in Laser Welding of Stainless Steel
,”
Weld. Int.
,
16
(
6
), pp.
451
460
.
37.
Takahashi
,
K.
, and
Sato
,
S.
,
2000
, “
Porosity Reduction in Laser Welding of Aluminium Alloys—Influence of Penetration, Joint, Oxygen Gas and Oxide Films
,”
Weld. Int.
,
14
(
6
), pp.
439
446
.
38.
Tsukamoto
,
S.
,
Arakane
,
G.
,
Honda
,
H.
, and
Kuroda
,
S.
,
2004
, “
Formation Mechanism and Prevention of Weld Defects in Full Penetration Laser Welding of Thick Steel Plates
,”
23rd International Congress on Applications of Lasers and Electro-Optics
, pp.
11
17
.
39.
Wei
,
P. S.
, and
Chao
,
T. C.
,
2014
, “
Prediction of Pore Size in High Power Density Beam Welding
,”
Int. J. Heat Mass Transfer
,
79
(
12
), pp.
223
232
.
40.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
41.
Hewitt
,
G. F.
,
1982
, “
Chapter 2, Liquid-Gas Systems
,”
Handbook of Multiphase Systems
,
G.
Hetsroni
ed.,
Hemisphere Pub.
,
New York
.
42.
Ishii
,
M.
,
1982
, “
Chapter 2.4, Wave Phenomena and Two-Phase Flow Instabilities
,”
Handbook of Multiphase Systems
,
G.
Hetsroni
ed.,
Hemisphere Pub.
,
New York
.
43.
Gurauskis
,
J.
,
Sola
,
D.
,
Pena
,
J. I.
, and
Orera
,
V. M.
,
2008
, “
Laser Drilling of Ni-YSZ Cermets
,”
J. Eur. Ceram. Soc.
,
28
(
14
), pp.
2673
2680
.
44.
DeBastiani
,
D. L.
,
Modest
,
M. F.
, and
Stubican
,
V. S.
,
1990
, “
Mechanism of Material Removal From Silicon Carbide by Carbon Dioxide Laser Heating
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
1947
1952
.
45.
Yilbas
,
B. S.
,
1995
, “
Study of Liquid and Vapor Ejection Processes During Laser Drilling of Metals
,”
J. Laser Appl.
,
7
(
3
), pp.
147
152
.
46.
Chan
,
C. L.
, and
Mazumder
,
J.
,
1987
, “
One-Dimensional Steady-State Model for Damage by Vaporization and Liquid Expulsion Due to Laser-Material Interaction
,”
J. Appl. Phys.
,
62
(
11
), pp.
4579
4586
.
47.
Wei
,
P. S.
, and
Ho
,
J. Y.
,
1990
, “
Energy Considerations in High-Energy Beam Drilling
,”
Int. J. Heat Mass Transfer
,
33
(
10
), pp.
2207
2217
.
48.
Reznichenko
,
V. F.
, and
Verigin
,
A. M.
,
1986
, “
Parameters of the Vapor-Gas Phase in the Channel in Deep Penetration of Metals With an Electron Beam
,”
Svar. Proizvod.
,
33
(
6
), pp.
25
28
.
49.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1205
1219
.
50.
Grezev
,
A. N.
,
2005
, “
Plasma Formation in Laser Welding
,”
Weld. Int.
,
19
(
10
), pp.
808
813
.
51.
Bedenko
,
D. V.
,
Kovalev
,
O. B.
, and
Krivtsun
,
I. V.
,
2010
, “
Simulation of Plasma Dynamics in a Keyhole During Laser Welding of Metal With Deep Penetration
,”
J. Phys. D: Appl. Phys.
,
43
(
10
), p.
105501
.
52.
Ono
,
M.
,
Nakada
,
K.
, and
Kosuge
,
S.
,
1993
, “
Effect of Ambient Pressure and Gas on Penetration Depth and Laser-Induced Plasma Behaviour-Study on CO2 Laser Welding Phenomena
,”
Weld. Int.
,
7
(
1
), pp.
15
20
.
53.
Kumar
,
N.
,
Dash
,
S.
,
Tyagi
,
A. K.
, and
Raj
,
B.
,
2011
, “
Melt Pool Vorticity in Deep Penetration Laser Material Welding
,”
Sadhana
,
36
(
2
), pp.
251
265
.
54.
Tan
,
W.
, and
Shin
,
Y. C.
,
2014
, “
Analysis of Multi-Phase Interaction and Its Effects on Keyhole Dynamics With a Multi-Physics Numerical Model
,”
J. Phys. D: Appl. Phys.
,
47
(
34
), p.
345501
.
55.
Amara
,
E. H.
,
Fabbro
,
R.
, and
Bendib
,
A.
,
2003
, “
Modeling of the Compressible Vapor Flow Induced in a Keyhole During Laser Welding
,”
J. Appl. Phys.
,
93
(
7
), pp.
4289
4296
.
56.
Kim
,
K. R.
, and
Farson
,
D. F.
,
2001
, “
CO2 Laser–Plume Interaction in Materials Processing
,”
J. Appl. Phys.
,
89
(
1
), pp.
681
688
.
57.
Fabbro
,
R.
,
Slimani
,
S.
,
Doudet
,
I.
,
Coste
,
F.
, and
Briand
,
F.
,
2006
, “
Experimental Study of the Dynamical Coupling Between the Induced Vapour Plume and the Melt Pool for Nd–Yag CW Laser Welding
,”
J. Phys. D: Appl. Phys.
,
39
(
2
), pp.
394
400
.
58.
Knight
,
C. J.
,
1979
, “
Theoretical Modeling of Rapid Surface Vaporization With Back Pressure
,”
AIAA J.
,
17
(
5
), pp.
519
523
.
59.
Jeong
,
S. H.
,
Greif
,
R.
, and
Russo
,
R. E.
,
1998
, “
Numerical Modeling of Pulsed Laser Evaporation of Aluminum Targets
,”
Appl. Surf. Sci.
,
127–129
, pp.
177
183
.
60.
Ki
,
H.
,
Mohanty
,
P. S.
, and
Mazumder
,
J.
,
2002
, “
Modeling of Laser Keyhole Welding: Part I. Mathematical Modeling, Numerical Methodology, Role of Recoil Pressure, Multiple Reflections, and Free Surface Evolution
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1817
1830
.
61.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
2
,
Wiley
,
New York
.
62.
Wei
,
P. S.
,
Chuang
,
K. C.
,
Ku
,
J. S.
, and
DebRoy
,
T.
,
2012
, “
Mechanisms of Spiking and Humping in Keyhole Welding
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
3
), pp.
383
394
.
63.
Modest
,
M. F.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.