The current methods for manufacturing super-abrasive elements result in a stochastic geometry of abrasives with random three-dimensional abrasive locations. This paper focuses on the evaluation of wear progression/failure characteristics of micro-abrasive arrays made of ultrahard composites (polycrystalline diamond—PCD; polycrystalline cubic boron nitride—PCBN) in cutting/wear tests against silicon dioxide workpiece. Pulsed laser ablation (Nd:YAG laser) has been used to manufacture repeatable patterns of micro-abrasive edges onto microstructurally different PCD/PCBN composites. Opposing to these highly engineered micro-abrasive arrays, conventional electroplated abrasive pads containing diamond and CBN abrasives, respectively, have been chosen as benchmarks and tested under the same conditions. Contact profiling, optical microscopy, and environmental scanning electron microscopy have been employed for the characterization of the abrasive arrays and electroplated tools before/during/after the wear/cutting tests. For the PCD abrasive micro-arrays, the type of grain and binder percentage proved to affect the wear performances due to the different extents of compressive stresses occurring at the grain boundaries. In this respect, the micro-arrays made of PCD with mixed diamond grain sizes have shown slower wear progression when compared to the electroplated diamond pads confirming the combination of the high wear resistance typical of the fine grain and the good shock resistance typical of the coarse grain structures. The micro-arrays made of fine grained diamond abrasives have produced lower contact pressures with the workpiece shaft, confirming a possible application in polishing or grinding. As for the PCBN abrasive micro-arrays, the increase of metallic binder and the presence of metalloids in the medium content-CBN specimens have shown to produce higher contact pressure with the workpiece when compared to the electroplated specimen, causing fracturing as the main wear mechanism; while the PCBN micro-array with purely a metallic binder phase has shown slower wear and lower contact pressure in comparison to the electroplated CBN specimen. Among all of the tested arrays, the mixed grained PCD and the purely metallic binder phase PCBN micro-arrays have shown slower wear when benchmarked to the electroplated pads, giving a possible application of their use in the cutting tool industry.

References

References
1.
Cook
,
M. W.
, and
Bossom
,
P. K.
,
2000
, “
Trends and Recent Developments in the Material Manufacture and Cutting Tool Application of Polycrystalline Diamond and Polycrystalline Cubic Boron Nitride
,”
Int. J. Refract. Met. Hard Mater.
,
18
(
2–3
), pp.
147
152
.
2.
Ismail
,
M. F.
,
Yanagi
,
K.
, and
Isobe
,
H.
,
2011
, “
Characterization of Geometrical Properties of Electroplated Diamond Tools and Estimation of Its Grinding Performance
,”
Wear
,
271
(
3–4
), pp.
559
564
.
3.
Butler-Smith
,
P. W.
,
Axinte
,
D. A.
, and
Daine
,
M.
,
2011
, “
Ordered Diamond Micro-Arrays for Ultra-Precision Grinding—An Evaluation in Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
51
(
1
), pp.
54
66
.
4.
Butler-Smith
,
P. W.
,
Axinte
,
D. A.
,
Pacella
,
M.
, and
Fay
,
M. W.
,
2013
, “
Micro/Nanometric Investigations of the Effects of Laser Ablation in the Generation of Micro-Tools From Solid CVD Diamond Structures
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
194
200
.
5.
Pacella
,
M.
,
Axinte
,
D. A.
,
Butler-Smith
,
P. W.
, and
Daine
,
M.
,
2014
, “
On the Topographical/Chemical Analysis of Polycrystalline Diamond Pulsed Laser Ablated Surfaces
,”
Procedia CIRP
,
13
, pp.
387
392
.
6.
Pacella
,
M.
,
2014
, “
Pulsed Laser Ablation (PLA) of Ultra-Hard Structures: Generation of Damage-Tolerant Freeform Surfaces for Advanced Machining Applications
,” Ph.D. thesis, http://eprints.nottingham.ac.uk/27730/1/Pacella%20Manuela%20PhD%20Final%20Thesis.pdf
7.
Butler-Smith
,
P. W.
,
Axinte
,
D. A.
, and
Daine
,
M.
,
2009
, “
Preferentially Oriented Diamond Micro-Arrays: A Laser Patterning Technique and Preliminary Evaluation of Their Cutting Forces and Wear Characteristics
,”
Int. J. Mach. Tools Manuf.
,
49
(
15
), pp.
1175
1184
.
8.
Pacella
,
M.
,
Axinte
,
D. A.
,
Butler-Smith
,
P. W.
,
Axinte
,
D. A.
, and
Fay
,
M. W.
,
2014
, “
FIB/TEM/EELS Micro/Nanometric Investigations of the Effects of Laser Ablation on the Diamond/Binder Structure in Polycrystalline Diamond Composites
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1153
1161
.
9.
Zawada-Tomkiewicz
,
A.
,
2011
, “
Analysis of Surface Roughness Parameters Achieved by Hard Turning With the Use of PCBN Tools
,”
Est. J. Eng.
,
17
(
1
), pp.
88
99
.
10.
Tan
,
N.
,
Liu
,
C. J.
,
Li
,
Y. J.
,
Dou
,
Y. W.
,
Wang
,
H. K.
,
Ma
,
H.
,
Kou
,
Z. L.
, and
He
,
D. W.
,
2010
, “
Characterization of Polycrystalline cBN Compacts Sintered Without any Additives
,”
Eur. Phys. J. Appl. Phys.
,
53
(
1
), p.
11501
.
11.
Halpin
,
T.
,
Byrne
,
G.
,
Barry
,
J.
, and
Ahearne
,
E.
,
2009
, “
The Performance of Polycrystalline Cubic Boron Nitride Tools in Continuous, Semi-Interrupted, and Interrupted Hard Machining
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
8
), pp.
947
953
.
12.
Kawasegi
,
N.
,
Sugimori
,
H.
,
Morimoto
,
H.
,
Morita
,
N.
, and
Hori
,
I.
,
2009
, “
Development of Cutting Tools With Microscale and Nanoscale Textures to Improve Frictional Behavior
,”
Precis. Eng.
,
33
(
3
), pp.
248
254
.
13.
Sharif Uddin
,
M.
,
Seah
,
K. H. W.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Liu
,
K.
,
2004
, “
Effect of Crystallographic Orientation on Wear of Diamond Tools for Nano-Scale Ductile Cutting of Silicon
,”
Wear
,
257
(
7–8
), pp.
751
759
.
14.
Zareena
,
R.
, and
Veldhuis
,
S. C.
,
2012
, “
Tool Wear Mechanisms and Tool Life Enhancement in Ultra-Precision Machining of Titanium
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
560
570
.
15.
Mao
,
W. L.
,
Mao
,
H.
,
Eng
,
P. J.
,
Trainor
,
T. P.
,
Newville
,
M.
,
Kao
,
C.
,
Heinz
,
D. L.
,
Shu
,
J.
,
Meng
,
Y.
, and
Hemley
,
R. J.
,
2003
, “
Bonding Changes in Compressed Superhard Graphite
,”
Science
,
302
(
5644
), pp.
425
427
.
16.
Gogolinsky
,
R.
,
1998
, “
Nano-Sclerometry Measurements of Superhard Materials
,”
Diagn. Mater.
,
6
(
64
), pp.
30
43
.
17.
Neale
,
M. J.
, and
Gee
,
M.
,
2001
,
Guide to Wear Problems and Testing for Industry
,
William Andrew Publishing
,
New York
.
18.
Hutchings
,
I. M.
,
1992
,
Tribology Friction and Wear of Engineering Materials
,
Oxford
,
UK
.
19.
Wong
,
C. J.
,
1981
, “
Fracture and Wear of Diamond Cutting Tools
,”
J. Eng. Mater.
,
103
(
4
), pp.
341
345
.
20.
Sen
,
P. K.
,
Cook
,
M. W.
, and
Achilles
,
R. D.
,
1998
, “
Various Diamond Cutting Tool Materials for the Machining of HPL Wood Flooring
,” Ultrahard Materials Technical Conference, Windsor, Ontario, Canada.
21.
Hwang
,
T. W.
,
Evans
,
C. J.
, and
Whitenton
,
E. P.
,
2000
, “
High Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part 1: Wear and Wheel Life
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
32
41
.
22.
Hwang
,
T. W.
, and
Evans
,
C. J.
,
2014
, “
High Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp. 4
2
50
.
23.
Moore
,
D. F.
,
1975
,
Principle and Application of Tribology
,
Pergamon
,
Oxford, UK
.
24.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Oxford University
,
Oxford, UK
.
25.
Carolan
,
D.
,
Petrović
,
M.
,
Ivanković
,
A.
, and
Murphy
,
N.
,
2010
, “
Fracture Properties of PCBN as a Function of Loading Rate and Temperature
,”
Key Eng. Mater.
,
452–453
, pp.
457
460
.
26.
Element Six
,
2013
, “
PCBN Properties and Applications
,” http://www.e6.com/wps/wcm/connect/e6_content_en/home/materials+and+products/pcbn
27.
Huang
,
H.
,
Yin
,
L.
, and
Zhou
,
L.
,
2003
, “
High Speed Grinding of Silicon Nitride With Resin Bond Diamond Wheels
,”
J. Mater. Process. Technol.
,
141
(
3
), pp.
329
336
.
28.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
,
2004
, “
Modeling the Progression of Flank Wear on Uncoated and Ceramic-Coated Polycrystalline Cubic Boron Nitride Tools in Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
104
109
.
29.
Miess
,
D.
, and
Rai
,
G.
,
1996
, “
Fracture Toughness and Thermal Resistance of Polycrystalline Diamond Compacts
,”
ASME J. Manuf. Sci. Eng.
,
209
(
1–2
), pp.
270
276
.
30.
Akaishi
,
M.
,
Ohsawa
,
T.
, and
Yamaoka
,
S.
,
2006
, “
Synthesis of Fine-Grained Polycrystalline Diamond Compact and Its Microstructure
,”
J. Am. Ceram. Soc.
,
74
(
1
), pp.
5
10
.
31.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1999
, “
Cubic Boron Nitride Tool Wear in Interrupted Hard Cutting
,”
Wear
,
225–229
(
Part 1
), pp.
234
245
.
32.
Edwards
,
R.
,
1999
,
Cutting Tools
,
The Institute of Materials
,
London
.
33.
Huang
,
Y.
,
Chou
,
Y. K.
, and
Liang
,
S. Y.
,
2006
, “
CBN Tool Wear in Hard Turning: A Survey on Research Progresses
,”
Int. J. Adv. Manuf. Technol.
,
35
(
5–6
), pp.
443
453
.
34.
Che
,
D.
,
Han
,
P.
,
Guo
,
P.
, and
Ehmann
,
K.
,
2012
, “
Issues in Polycrystalline Diamond Compact Cutter–Rock Interaction From a Metal Machining Point of View—Part I: Temperature, Stresses, and Forces
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
064001
.
35.
Chen
,
F.
,
Xu
,
G.
,
Ma
,
C.
, and
Xu
,
G.
,
2010
, “
Thermal Residual Stress of Polycrystalline Diamond Compacts
,”
Trans. Nonferrous Met. Soc. China
,
20
(
2
), pp.
227
232
.
36.
Bertagnolli
,
K.
, and
Vale
,
R.
,
2000
, “
Understanding and Controlling Residual Stresses in Thick Polycrystalline Diamond Cutters for Enhanced Durability
,”
International Techical Conference on Diamond, Cubic Boron Nitride and Their Applications
.
37.
Bayer
,
R. G.
,
2002
,
Wear Analysis for Engineers
,
HNB Publishing
,
New York
.
38.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R. L.
, and
Pen
,
H.
,
2012
, “
Influence of Temperature and Crystal Orientation on Tool Wear During Single Point Diamond Turning of Silicon
,”
Wear
,
284–285
, pp.
65
72
.
You do not currently have access to this content.