Additive manufacturing (AM) enables time and cost savings in the product development process. It has great potential in the manufacturing of lighter parts or tools by the embedding of cellular/lattice structures that consume less material while still distributing the necessary strength. Less weight and less material consumption can lead to enormous energy and cost savings. Although AM has come a long way over the past 25–30 years since the first technology was invented, the design of parts and tools that capitalize on the technology do not yet encompass its full potential. Designing for AM requires departing from traditional design guidelines and adopting new design considerations and thought structures. Where previous manufacturing techniques (computer numerical control (CNC) machining, casting, etc.) often necessitated solid parts, AM allows for complex parts with cellular and lattice structure implementation. The lattice structure geometry can be manipulated to deliver the level of performance required of the part. The development and research of different cell and lattice structures for lightweight design is of significant interest for realizing the full potential of AM technologies. The research not only includes analysis of existing software tools to design and optimize cell structures, but it also involves design consideration of different unit cell structures. This paper gives a solid foundation of an experimental analysis of additive manufactured parts with diverse unit cell structures in compression and flexural tests. Although the research also includes theoretical finite element analysis (FEA) of the models, the results are not considered here. As an introduction, the paper briefly explains the basics of stress and strain relationship and summarizes the test procedure and methods. The tests concentrate primarily on the analysis of 3D printed polymer parts manufactured using PolyJet technology. The results show the behavior of test specimens with different cell structures under compression and bending load. However, the research has been extended and is still ongoing with an analysis of selective laser melted test specimens in aluminum alloy AlSi10Mg.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
, New York.
2.
Beyer
,
C.
, and
Kochan
,
D.
,
2013
, “
Potential for Innovation in Additive Manufacturing
,”
Pahl/Beitz Engineering Design: Fundamentals of a Successful Product Design Process
, 8th ed.,
J.
Feldhusen
, and
K.-H.
Grote
, eds.,
Springer Vieweg
, Berlin/Heidelberg, Germany, pp.
48
98
(in German).
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
4.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
5.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
.
6.
Wu
,
D.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2015
, “
Scalability Planning for Cloud-Based Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040911
.
7.
Modekurthy
,
V. P.
,
Liu
,
X. F.
,
Fletcher
,
K. K.
, and
Leu
,
M. C.
,
2015
, “
Design and Implementation of a Broker for Cloud Additive Manufacturing Services
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040904
.
8.
Beyer
,
C.
, and
Figueroa
,
D.
,
2015
, “
Lattice Structure Implementation and Design Principles
,” RAPID 2015, Long Beach, CA.
9.
Casadei, A., and Broda, R., Ricardo, Inc.
,
2008
, “
Impact of Vehicle Weight Reduction on Fuel Economy for Various Vehicle Architectures
,” Report No. 2008-04, Project FB769, RD.07/71602.2, The Aluminum Association, Arlington, VA.
10.
Federal Aviation Administration
,
2009
, “
Semi-Annual Launch Report
,” FAA, Washington DC.
11.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids, Structure and Properties
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
12.
Ford
,
C. M.
, and
Gibson
,
L. J.
,
1998
, “
Uniaxial Strength Asymmetry in Cellular Materials: An Analytical Model
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
521
531
.
13.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Harley
,
B. A.
,
2010
,
Cellular Materials in Nature and Medicine
,
Cambridge University Press
, Cambridge, UK.
14.
Ashby
,
M.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
15
30
.
15.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
31
68
.
16.
Moongkhamklang
,
P.
,
Elzey
,
D. M.
, and
Wadley
,
H. N.
,
2008
, “
Titanium Matrix Composite Lattice Structures
,”
Composites, Part A
,
39
(
2
), pp.
176
187
.
17.
Choi
,
J.
, and
Chae
,
T.-S.
,
2015
, “
Effective Stiffness and Effective Compressive Yield Strength for Unit-Cell Model of Complex Truss
,”
Int. J. Mech. Mater. Des.
,
11
(
1
), pp.
91
110
.
18.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
19.
Jeong
,
N.
, and
Rosen
,
D. W.
,
2014
, “
Microstructure Feature Recognition for Materials Using Surfacelet-Based Methods for Computer-Aided Design-Material Integration
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061021
.
20.
Yang
,
L.
,
2015
, “
Experimental-Assisted Design Development for an Octahedral Cellular Structure Using Additive Manufacturing
,”
Rapid Prototyping J.
,
21
(
2
), pp.
168
176
.
21.
Valdevit
,
L.
,
Jacobsen
,
A. J.
,
Greer
,
J. R.
, and
Carter
,
W. B.
,
2011
, “
Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials
,”
J. Am. Ceram. Soc.
,
94
(
1
), pp.
15
34
.
22.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
23.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
24.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
25.
Rua
,
Y.
,
Muren
,
R.
, and
Reckinger
,
S.
,
2015
, “
Limitations of Additive Manufacturing on Microfluidic Heat Exchanger Components
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034504
.
26.
Brant
,
A. M.
,
Sundaram
,
M. M.
, and
Kamaraj
,
A. B.
,
2015
, “
Finite Element Simulation of Localized Electrochemical Deposition for Maskless Electrochemical Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011018
.
27.
Sundaram
,
M. M.
,
Kamaraj
,
A. B.
, and
Kumar
,
V. S.
,
2015
, “
Mask-Less Electrochemical Additive Manufacturing: A Feasibility Study
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021006
.
28.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
ASME
Paper No. DETC2005-85366.
29.
Nguyen
,
J.
,
Park
,
S.-I.
, and
Rosen
,
D. W.
,
2012
, “
Cellular Structure Design for Lightweight Components
,”
Innovative Developments in Virtual and Physical Prototyping—5th International Conference on Advanced Research and Rapid Prototyping
, pp.
203
210
.
30.
Medeirosesá
,
A.
,
Mello
,
V. M.
,
RodriguezEchavarria
,
K.
, and
Covill
,
D.
,
2015
, “
Adaptive Voids: Primal and Dual Adaptive Cellular Structures for Additive Manufacturing
,”
Visual Comput.
,
31
(
6–8
), pp.
799
808
.
31.
Challapalli
,
A.
, and
Ju
,
J.
,
2014
, “
Continuum Model for Effective Properties of Orthotropic Octet-Truss Lattice Materials
,”
ASME
Paper No. IMECE2014-38925.
32.
Hibbeler
,
R. C.
,
2011
,
Statics and Mechanics of Materials
,
R. C.
Hibbeler
, ed.,
Pearson
, New York, p.
379
.
33.
Masonry Laboratory
,
2007
, “
Masonry Society
,” University of Wyoming, Laramie, WY.
34.
Total Materia
,
2001
, “
Engineering Stress-Strain Curve: Part One
,” Total Materia, Zurich, Switzerland.
35.
Instron
,
2015
, “
Flexural Strength
,” Instron, Norwood, MA.
36.
Netfabb
,
2015
, “
Product Description: netfabb Selective Space Structures (3S)
,” netfabb GmbH, Parsberg, Germany.
37.
Wikipedia Encyclopedia
,
2015
, “
File Format Description: STL (File Format)
,” Wikimedia Foundation, Inc., San Francisco, CA.
38.
Wikipedia Encyclopedia
,
2015
, “
File Format Description: Additive Manufacturing File (AMF) Format
,” Wikimedia Foundation, Inc., San Francisco, CA.
39.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011007
.
40.
Stratasys
,
2015
, “
PolyJet Technology
,” Stratasys, Eden Prairie, MN.
41.
Stratasys
,
2015
, “
Objet30 Pro
,” Stratasys, Eden Prairie, MN.
42.
Stratasys
,
2014
, “
Polyjet Materials Data Sheet
,” Stratasys, Eden Prairie, MN.
43.
SLM Solutions GmbH
,
2015
, “
SLM 280 HL
,” SLM Solutions, Luebeck, Germany.
44.
Gu
,
D.
,
Chang
,
F.
, and
Dai
,
D.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
45.
SLM Solutions GmbH
,
2015
, “
SLM Materials
,” SLM Solutions, Luebeck, Germany.
46.
SAND.CORe
,
2013
, “
Best Practice Guide for Sandwich Structures in Marine Applications
,” Coordination Action on Advanced Sandwich Structures in the Transport Industries, Under European Commission Contract No. FP6-506330, SAND.CORe.
47.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
48.
Moon
,
S. K.
,
Tan
,
Y. E.
,
Hwang
,
J.
, and
Yoon
,
Y.-J.
,
2014
, “
Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures
,”
Int. J. Precis. Eng. Manuf.
,
1
(3) pp.
223
228
.
49.
Vernon
,
R. A.
,
2016
, “
Discovering Optimal Unit Cell Configurations When Designing For Additive Manufacturing Using Lattice Structures
,” M.S. thesis, CSU, Long Beach.
You do not currently have access to this content.