Unlike ferrous materials, where the cementite (Fe3C) phase acts as an abrasive that contributes to flank wear on the cutting tool, most titanium (Ti) alloys possesses no significant hard phase. Thus, the origin of flank wear is unclear in machining Ti alloys. To address this question, a Ti-6Al-4V bar was turned under various conditions with uncoated carbide and polycrystalline diamond (PCD) inserts, most commonly used tool materials for machining Ti alloys. These inserts were retrieved sporadically while tuning to examine the wear patterns using a confocal microscope. To correlate the patterns with the microstructure of the original bar, the microstructure was carefully characterized using Orientation Image Microscopy (OIM) with electron-backscattered diffraction (EBSD). From the wear patterns, two distinct types of damage were identified: (a) microscopic and macroscopic fractures on the cutting edges and (b) scoring marks on flank faces. This paper demonstrates that both types of damage were caused primarily by the heterogeneity in hardness in the α-crystals, where the plane perpendicular to the c-axis in an α-crystal is substantially harder than any other direction in the α-crystal as well as the isotropic β-crystal. In addition to such heterogeneities, adhesion layer, ubiquitous to machining Ti alloys, detaches small fragments of the tool, which resulted in microscopic and macroscopic fractures observed on flank wear.

References

References
1.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Materials Titanium Alloys and Their Machinability
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
2.
Rahman
,
M.
,
Wong
,
Y. S.
, and
Zareena
,
A. R.
,
2003
, “
Machinability of Titanium Alloys
,”
JSME Int. J. Ser. C
,
46
(
1
), pp.
107
115
.
3.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
4.
Andriya
,
N.
,
Rao
,
P. V.
, and
Ghosh
,
S.
,
2012
, “
Dry Machining of Ti-6Al-4V Using PVD Coated TiAlN Tools
,”
World Congress on Engineering
, Vol.
III
, pp.
2
7
.
5.
Nandy
,
A. K.
, and
Paul
,
S.
,
2008
, “
Effect of Coolant Pressure, Nozzle Diameter, Impingement Angle and Spot Distance in High Pressure Cooling With Neat Oil in Turning Ti-6Al-4V
,”
Mach. Sci. Technol.: Int. J.
,
12
(
4
), pp.
445
473
.
6.
Toh
,
C. K.
, and
Kanno
,
S.
,
2004
, “
Surface integrity Effects on Turned 6061 and 6061-T6 Aluminum Alloys
,”
J. Mater. Sci.
,
39
(
3
) pp.
3497
3500
.
7.
Boothroyd
,
G.
,
1975
,
Fundamentals of Metal Machining and Machine Tools
,
Scripta Book Company
,
Washington, DC
.
8.
Shahan
,
A. R.
, and
Taheri
,
A. K.
,
1993
, “
Adiabatic Shear Bands in Titanium and Titanium Alloys: A Critical Review
,”
Mater. Des.
,
14
(
4
), pp.
243
250
.
9.
Konig
,
W.
,
1979
, “
Applied Research on the Machinability of Titanium and Its Alloys
,”
Proceedings of the 47th Meeting on AGARD Structural and Materials Panel
, Florence, Italy, Sept. 26–28, 1978, NATO Advisory Group for Aerospace Research and Development, London, pp.
1.1
1.10
, No. AGARD-CP-256.
10.
Hartung
,
P. D.
, and
Kramer
,
B. M.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann. -Manuf. Technol.
,
31
(
1
), pp.
75
80
.
11.
Dhar
,
N. R.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2002
, “
Machining of AISI 4140 Steel Under Cryogenic Cooling - Tool Wear, Surface Roughness and Dimensional Deviation
,”
J. Mater. Process. Technol.
,
123
(
3
), pp.
483
489
.
12.
Dhar
,
N. R.
,
Ahmed
,
M. T.
, and
Islam
,
S.
,
2007
,“
An Experimental Investigation on Effect of Minimum Quantity Lubrication in Machining AISI 1040 Steel
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
748
753
.
13.
List
,
G.
,
Nouari
,
M.
,
Géhin
,
D.
,
Gomez
,
S.
,
Manaud
,
J. P.
,
Le Petitcorps
,
Y.
, and
Girot
,
F.
,
2005
, “
Wear Behaviour of Cemented Carbide Tools in Dry Machining of Aluminium Alloy
,”
Wear
,
259
(
7–12
), pp.
1177
1189
.
14.
Ramesh
,
S.
,
Karunamoorthy
,
L.
, and
Palanikumar
,
K.
,
2008
, “
Fuzzy Modeling and Analysis of Machining Parameters in Machining Titanium Alloy
,”
Mater. Manuf. Processes
,
23
(
4
), pp.
439
447
.
15.
Machado
,
A. R.
, and
Wallbank
,
J.
,
1990
, “
Machining of Titanium and Its Alloys-A Review
,”
Proc. Inst. Mech. Eng.
,
204
(
1
), pp.
53
60
.
16.
Armendia
,
M.
,
Osborne
,
P.
,
Garay
,
A.
,
Belloso
,
J.
,
Turner
,
S.
, and
Arrazola
,
P.-J.
,
2012
, “
Influence of Heat Treatment on the Machinability of Titanium Alloys
,”
Mater. Manuf. Processes
,
27
(
4
), pp.
457
461
.
17.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
(
1–2
), pp.
103
114
.
18.
Oosthuizen
,
G. A.
,
Akdogan
,
G.
,
Dimitrov
,
D.
, and
Treurnich
,
N. F.
,
2010
, “
A Review of the Machinability of Titanium Alloys
,”
R&D J. South Afr. Inst. Mech. Eng.
,
26
, pp.
43
52
.
19.
Machai
,
C.
,
Iqbal
,
A.
,
Biermann
,
D.
,
Upmeier
,
T.
, and
Schumann
,
S.
,
2013
, “
On the Effects of Cutting Speed and Cooling Methodologies in Grooving Operation of Various Tempers of β-Titanium Alloy
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1027
1037
.
20.
Joshi
,
S.
,
Pawar
,
P.
,
Tewari
,
A.
, and
Joshi
,
S. S.
,
2014
, “
Effect of β Phase Fraction in Titanium Alloys on Chip Segmentation in Their Orthogonal Machining
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
3
), pp.
191
201
.
21.
Motonishi
,
S.
,
Isoda
,
S.
,
Itoh
,
H.
,
Tsumori
,
Y.
, and
Terada
,
Y.
,
1987
, “
Study on Machining of Titanium and Its Alloys
,”
Kobelco Technol. Rev.
,
2
, pp.
28
31
.
22.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
23.
Rahim
,
E. A.
,
Kamdani
,
K.
, and
Sharif
,
S.
,
2008
, “
Performance Evaluation of Uncoated Carbide Tool in High Speed Drilling of Ti6Al4V
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
4
), pp.
522
531
.
24.
Gente
,
A.
,
Hoffmeister
,
H. W.
, and
Evans
,
C. J.
,
2001
, “
Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds
,”
CIRP Ann. –Manuf. Technol.
,
50
(
1
), pp.
49
52
.
25.
Bayoumi
,
E.
, and
Xie
,
J. Q.
,
1995
, “
Some Metallurgical Aspects of Chip Formation in Cutting Ti-6wt.%Al-4wt.%V Alloy
,”
Mater. Sci. Eng. A
,
190
(
1–2
), pp.
173
180
.
26.
Arrazola
,
P.-J.
,
Garay
,
A.
,
Iriarte
,
L.-M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Le Maître
,
F.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555.3)
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2223
2230
.
27.
Ibrahim
,
G. A.
,
CheHaron
,
C. H.
, and
Ghani
,
J. A.
,
2009
, “
Surface Integrity of Ti-6Al-4V ELI When Machined Using Coated Carbide Tools Under Dry Cutting Condition
,”
Int. J. Mech. Mater. Eng.
,
4
(
2
), pp.
191
196
.
28.
Jawaid
,
A.
,
Che-Haron
,
C.
, and
Abdullah
,
A.
,
1999
, “
Tool Wear Characteristics in Turning of Titanium Alloy Ti-6246
,”
J. Mater. Process. Technol.
,
92–93
, pp.
329
334
.
29.
Bermingham
,
M. J.
,
Kirsch
,
J.
,
Sun
,
S.
,
Palanisamy
,
S.
, and
Dargusch
,
M. S.
,
2011
, “
New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
500
511
.
30.
Dearnley
,
P. A.
, and
Grearson
,
A. N.
,
1986
, “
Evaluation of Principal Wear Mechanisms of Cemented Carbides and Ceramics Used for Machining Titanium Alloy IMI 318
,”
Mater. Sci. Technol.
2
(
1
), pp.
47
58
.
31.
Hughes
,
J. I.
,
Sharman
,
A. R. C.
, and
Ridgway
,
K.
,
2004
, “
The Effect of Tool Edge Preparation on Tool Life and Workpiece Surface Integrity
,”
Proc. Inst. Mech. Eng.
,
218
(
9
), pp.
1113
1123
.
32.
Narutaki
,
N.
,
Murakoshi
,
A.
,
Motonishi
,
S.
, and
Takeyama
,
H.
,
1983
, “
Study on Machining of Titanium Alloys
,”
CIRP Ann. –Manuf. Technol.
,
32
(
1
), pp.
65
69
.
33.
Wright
,
P. K.
, and
Bagchi
,
A.
,
1981
, “
Wear Mechanisms That Dominate Tool-Life in Machining
,”
J. Appl. Metalworking
,
1
(
4
), pp.
15
23
.
34.
Venugopal
,
K. A.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Growth of Tool Wear in Turning of Ti-6Al-4V Alloy Under Cryogenic Cooling
,”
Wear
,
262
(
9–10
), pp.
1071
1078
.
35.
Hasçalık
,
A.
, and
Çaydaş
,
U.
,
2007
, “
Optimization of Turning Parameters for Surface Roughness and Tool Life Based on the Taguchi Method
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
896
903
.
36.
Britton
,
T. B.
,
Liang
,
H.
,
Dunne
,
F. P. E.
, and
Wilkinson
,
A. J.
,
2010
, “
The Effect of Crystal Orientation on the Indentation Response of Commercially Pure Titanium: Experiments and Simulations
,”
Proc. R. Soc. London, Ser. A
,
466
(
2115
), pp.
695
719
.
37.
Kwon
,
J.
,
Brandes
,
M. C.
,
Sudharshan Phani
,
P.
,
Pilchak
,
A. P.
,
Gao
,
Y. F.
,
George
,
E. P.
,
Pharr
,
G. M.
, and
Mills
,
M. J.
,
2013
, “
Characterization of Deformation Anisotropies in an α-Ti Alloy by Nanoindentation and Electron Microscopy
,”
Acta Mater.
,
61
(
13
), pp.
4743
4756
.
38.
Chen
,
H.
, and
Cao
,
C.
,
2012
, “
Characterization of Hot Deformation Microstructures of Alpha-Beta Titanium Alloy With Equiaxed Structure
,”
Trans. Nonferrous Metals Soc. China
,
22
(
3
), pp.
503
509
.
39.
Sabol
,
J. C.
,
Pasang
,
T.
,
Misiolek
,
W. Z.
, and
Williams
,
J. C.
,
2012
, “
Localized Tensile Strain Distribution and Metallurgy of Electron Beam Welded Ti–5Al–5V–5Mo–3Cr Titanium Alloys
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2380
2385
.
40.
He
,
D.
,
Zhu
,
J.
,
Lai
,
Z.
,
Liu
,
Y.
,
Yang
,
X.
, and
Nong
,
Z.
,
2013
, “
Residual Elastic Stress–Strain Field and Geometrically Necessary Dislocation Density Distribution Around Nano-Indentation in TA15 Titanium Alloy
,”
Trans. Nonferrous Metals Soc. China
,
23
(
1
), pp.
7
13
.
41.
Rack
,
H. J.
, and
Qazi
,
J. I.
,
2006
, “
Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1269
1277
.
42.
Hosseini
,
A.
, and
Kishawy
,
H. A.
,
2014
, “
Machining of Titanium Alloys
,” in
Machining of Titanium Alloys
,
J. P.
Davim
, ed.,
Springer
,
Berlin/Heidelberg
.
43.
Groover
,
M. P.
,
2010
,
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
,
4th ed.
,
Wiley
,
New York
.
44.
Lammer
,
A.
,
1988
, “
Mechanical Properties of Polycrystalline Diamonds
,”
Mater. Sci. Technol.
,
4
(
11
), pp.
949
955
.
45.
Fang
,
Z. Z.
,
2005
, “
Correlation of Transverse Rupture Strength of WC–Co With Hardness
,”
Int. J. Refract. Metals Hard Mater.
,
23
(
2
), pp.
119
127
.
46.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kwon
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti-6Al-4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.
You do not currently have access to this content.