Needle insertion is a widely used medical procedure in various minimally invasive surgeries. The estimation of the coupled needle deflection and tissue deformation during the needle insertion procedure is crucial to the success of the surgery. In this work, a novel needle deflection–tissue deformation coupling model is proposed for flexible needle insertion into soft tissue. Based on the assumption that the needle deflection is small comparing to the length of the insertion, the needle–tissue interaction model is developed based on the modified local constraint method, where the interactive forces between the needle and the tissue are balanced through integration of needle–force and tissue–force relationships. A testbed is constructed and the experiments are designed to validate the proposed method using artificial phantom with markers. Based on the experimental analysis, the cutting and friction forces are separated from the force–time curves and used as the inputs into the proposed model. The trajectories of the markers inside the soft tissue are recorded by a CCD camera to compare with the simulation trajectories. The errors between the experimental and simulation trajectories are less than 0.8 mm. The results demonstrate that the proposed method is effective to model the needle insertion procedure.

References

References
1.
Abolhassani
,
N.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), 5, pp.
413
431
.
2.
Gao
,
D.
,
Lei
,
Y.
, and
Zheng
,
H.
,
2012
, “
Needle Steering for Robot-Assisted Insertion Into Soft Tissue: A Survey
,”
Chin. J. Mech. Eng.
,
25
(
4
), pp.
629
638
.
3.
Nienhuys
,
H.-W.
, and
van der Stappen
,
A. F.
,
2003
, “
Interactive Needle Insertions in 3d Nonlinear Material
,” Institute of Information Computing Science, Utrecht University, Utrecht, Netherlands, available at: www.cs.uu.nl.
4.
Hing
,
J. T.
,
Brooks
,
A. D.
, and
Desai
,
J. P.
,
2006
, “
Reality-Based Needle Insertion Simulation for Haptic Feedback in Prostate Brachytherapy
,”
2006 IEEE International Conference on Robotics and Automation
, IEEE, pp.
619
624
.
5.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.
6.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
157
160
.
7.
Fukushima
,
Y.
,
Saito
,
K.
, and
Naemura
,
K.
,
2013
, “
Estimation of the Cutting Force Using the Dynamic Friction Coefficient Obtained by Reaction Force During the Needle Insertion
,”
Proc. CIRP
,
5
, pp.
265
269
.
8.
Crouch
,
J. R.
,
Schneider
,
C. M.
,
Wainer
,
J.
, and
Okamura
,
A. M.
,
2005
, “
A Velocity-Dependent Model for Needle Insertion in Soft Tissue
,”
Medical Image Computing and Computer-Assisted Intervention—Miccai 2005
, Vol.
3750
.
Springer
,
Berlin, Germany
, pp.
624
632
.
9.
Asadian
,
A.
,
Patel
,
R. V.
, and
Kermani
,
M. R.
,
2014
, “
Dynamics of Translational Friction in Needle-Tissue Interaction During Needle Insertion
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
73
85
.
10.
Fukushima
,
Y.
, and
Naemura
,
K.
,
2014
, “
Estimation of the Friction Force During the Needle Insertion Using the Disturbance Observer and the Recursive Least Square
,”
ROBOMECH J.
,
1
(
1
), pp.
1
8
.
11.
Barnett
,
A. C.
,
Lee
,
Y.-S.
, and
Moore
,
J. Z.
,
2015
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011005
.
12.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
, and
Okamura
,
A. M.
,
2009
, “
Observations and Models for Needle-Tissue Interactions
,”
2009 IEEE International Conference on Robotics and Automation
, IEEE, pp.
2687
2692
.
13.
Roesthuis
,
R. J.
,
Veen
,
Y. R. V.
,
Jahya
,
A.
, and
Misra
,
S.
,
2011
, “
Mechanics of Needle-Tissue Interaction
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
, IEEE, pp.
2558
2563
.
14.
Sadjadi
,
H.
,
Hashtrudi-Zaad
,
K.
, and
Fichtinger
,
G.
,
2014
, “
Needle Deflection Estimation: Prostate Brachytherapy Phantom Experiments
,”
ROBOMECH J.
,
9
(
6
), pp.
921
929
.
15.
Dehghan
,
E.
,
Goksel
,
O.
, and
Salcudean
,
S. E.
,
2006
,
A Comparison of Needle Bending Models
,
Springer
,
Berlin Heidelberg, Germany
.
16.
Shan
,
J.
,
Pan
,
L.
,
Yan
,
Y.
,
Jun
,
L.
, and
Zhiyong
,
Y.
,
2014
, “
Experimental Study of Needle-Tissue Interaction Forces: Effect of Needle Geometries, Insertion Methods and Tissue Characteristics
,”
J. Biomech.
,
47
(
13
), pp.
3344
3353
.
17.
Abolhassani
,
N.
,
Patel
,
R.
, and
Ayazi
,
F.
,
2007
, “
Effects of Different Insertion Methods on Reducing Needle Deflection
,”
Engineering in Medicine and Biology Society, EMBS 2007, 29th Annual International Conference of the IEEE
, pp.
491
494
.
18.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2009
, “
Fast Needle Insertion to Minimize Tissue Deformation and Damage
,”
IEEE International Conference on Robotics and Automation, 2009, ICRA’09
, IEEE, pp.
3097
3102
.
19.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2003
, “
Needle Insertion Modeling and Simulation
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
864
875
.
20.
Pezzementi
,
Z.
,
Ursu
,
D.
,
Misra
,
S.
, and
Okamura
,
A. M.
,
2008
, “
Modeling Realistic Tool-Tissue Interactions With Haptic Feedback: A Learning-Based Method
,”
2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, IEEE, pp.
209
215
.
21.
Kobayashi
,
Y.
,
Onishi
,
A.
,
Hoshi
,
T.
,
Kawamura
,
K.
,
Hashizume
,
M.
, and
Fujie
,
M. G.
,
2009
, “
Development and Validation of a Viscoelastic and Nonlinear Liver Model for Needle Insertion
,”
Int. J. Comput. Assisted Radiol. Surg.
,
4
(
1
), pp.
53
63
.
22.
Buijs
,
J. O. D.
,
Hansen
,
H. H.
,
Lopata
,
R. G.
,
Korte
,
C. L. d.
, and
Misra
,
S.
,
2011
, “
Predicting Target Displacements Using Ultrasound Elastography and Finite Element Modeling
,”
IEEE Trans. Biomed. Eng.
,
58
(
11
), pp.
3143
3155
.
23.
Goksel
,
O.
,
Salcudean
,
S. E.
,
Dimaio
,
S. P.
,
Rohling
,
R.
, and
Morris
,
J.
,
2005
,
3D Needle-Tissue Interaction Simulation for Prostate Brachytherapy
,
Springer
,
Berlin Heidelberg, Germany
.
24.
Haddadi
,
A.
, and
Hashtrudi-Zaad
,
K.
,
2011
, “
Development of a Dynamic Model for Bevel-Tip Flexible Needle Insertion Into Soft Tissues
,”
Engineering in Medicine and Biology Society, EMBC, Annual International Conference of the IEEE
, pp.
7478
7482
.
25.
Alterovitz
,
R.
,
Goldberg
,
K.
, and
Okamura
,
A.
,
2005
, “
Planning for Steerable Bevel-Tip Needle Insertion Through 2d Soft Tissue With Obstacles
,”
IEEE International Conference on Robotics and Automation, ICRA 2005
, pp.
1640
1645
.
26.
Chentanez
,
N.
,
Alterovitz
,
R.
,
Ritchie
,
D.
,
Cho
,
L.
,
Hauser
,
K. K.
,
Goldberg
,
K.
,
Shewchuk
,
J. R.
, and
O'Brien
,
J. F.
,
2009
,
Interactive Simulation of Surgical Needle Insertion and Steering
, Vol.
28
,
ACM
,
New York, NY
.
27.
Krouskop
,
T. A.
,
Wheeler
,
T. M.
,
Kallel
,
F.
,
Garra
,
B. S.
, and
Hall
,
T.
,
1998
, “
Elastic Moduli of Breast and Prostate Tissues Under Compression
,”
Ultrason. Imaging
,
20
(
4
), pp.
260
274
.
You do not currently have access to this content.