Titanium alloys are excellent candidates for aerospace applications due to their high strength-to-weight ratio and corrosion resistance. In the aerospace industry, diffusion bonding (DB) combined with superplastic forming is widely adopted to produce near net shape of titanium alloy structural parts. Of all the titanium alloys, bonding parameters have been well established for producing high-quality bonds only between Ti-6Al-4V and Ti-6Al-4V. The DB of similar alloys has been modeled successfully by many researchers. However, to date the DB time has not been modeled for dissimilar alloys. In the current work, the probabilistic model developed to predict DB time in similar titanium alloys is adapted for prediction of bonding time for Ti-64SG/Ti-6Al-2Sn-4Zr-2Mo SG dissimilar titanium alloys.

References

References
1.
Nassar
,
S. A.
,
Wu
,
Z.
,
Moustafa
,
K.
, and
Tzelepis
,
D.
,
2015
, “
Effect of Adhesive Nanoparticle Enrichment on Static Load Transfer Capacity and Failure Mode of Bonded Steel–Magnesium Single Lap Joints
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051024
.
2.
Lei
,
H. Y.
,
Li
,
Y. B.
,
Carlson
,
B. E.
, and
Lin
,
Z. Q.
,
2015
, “
Cold Metal Transfer Spot Joining of AA6061-T6 to Galvanized DP590 Under Different Modes
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051028
.
3.
Kulkarni
,
N.
, and
Ramulu
,
M.
,
2015
, “
Experimental Study of Mechanical Performance in Friction Stir Welded Dissimilar Titanium Alloys
,” Conference Proceedings of the Society for Experimental Mechanics Series,
Exp. Appl. Mech.
,
4
, pp.
165
171
.
4.
Kazakov
,
N. F.
,
1981
, Diffusion Bonding of Materials,
Pergamon Press
,
New York
.
5.
Paul
,
B. K.
,
Kwon
,
P.
, and
Subramanian
,
R.
,
2006
, “
Understanding Limits on Fin Aspect Ratios in Counterflow Microchannel Arrays Produced by Diffusion Bonding
,”
ASME J. Manuf. Sci. Eng.
,
128
(
6
), pp.
977
983
.
6.
Tiwari
,
S. K.
, and
Paul
,
B. K.
,
2010
, “
Comparison of Nickel Nanoparticle-Assisted Diffusion Brazing of Stainless Steel to Conventional Diffusion Brazing and Bonding Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
030902
.
7.
Sanders
,
D. G.
, and
Ramulu
,
M.
,
2004
, “
Examination of Superplastic Forming Combined With Diffusion Bonding for Titanium: Perspective From Experience
,”
J. Mater. Eng. Perform.
,
13
(
6
), pp.
744
752
.
8.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng.: A
,
213
(
1–2
), pp.
103
114
.
9.
Ridley
,
N.
,
Wang
,
Z. C.
, and
Lorimer
,
G. W.
,
1997
, “
Diffusion Bonding of Dissimilar Titanium Alloys
,”
Mater. Sci. Forum
,
243–245
, pp.
669
674
.
10.
Cope
,
M. T.
,
Evetts
,
D. R.
, and
Ridley
,
N.
,
1986
Superplastic Deformation Characteristics of Two Micro Duplex Titanium Alloys
,”
J. Mater. Sci.
,
21
(
11
), pp.
4003
4008
.
11.
King
,
W. H.
, and
Owczarski
,
W. A.
,
1967
, “
Diffusion Welding of Commercially Pure Titanium
,”
Weld. J. Res. Suppl.
,
46
, pp.
289
298
.
12.
Hamilton
,
C. H.
,
1973
,
Titanium Science and Technology
, Vol.
1
,
R. I.
Jaffee
, and
H. M.
Burte
, eds.,
Plenum Press
,
New York
, pp.
625
648
.
13.
Garmong
,
G.
,
Paton
,
N. E.
, and
Argon
,
A. S.
,
1975
, “
Attainment of Full Interfacial Contact During Diffusion Bonding
,”
Metall. Trans. A
,
6
(
6
), pp.
1269
1279
.
14.
Derby
,
B.
, and
Wallach
,
E. R.
,
1980
, “
Theoretical Model for Diffusion Bonding
,”
Met. Sci.
,
16
(
1
), pp.
49
56
.
15.
Derby
,
B.
, and
Wallach
,
E. R.
,
1984
, “
Diffusion Bonding: Development of Theoretical Model
,”
Met. Sci.
,
18
(
1
), pp.
427
431
.
16.
Hill
,
A.
, and
Wallach
,
E. R.
,
1989
, “
Modeling Solid State Diffusion Bonding
,”
Acta Metall.
,
37
(
9
), pp.
2425
2437
.
17.
Pilling
,
J.
,
Livesey
,
D. W.
,
Hawkyard
,
J. B.
, and
Ridley
,
N.
,
1984
, “
Solid State Bonding in Superplastic Ti-6Al-4V
,”
Met. Sci.
,
18
(
3
), pp.
117
122
.
18.
Pilling
,
J.
,
1988
, “
The Kinetics of Isostatic Diffusion Bonding in Superplastic Materials
,”
Mater. Sci. Eng.
,
100
, pp.
137
144
.
19.
Salehi
,
M. T.
,
Pilling
,
J.
,
Ridley
,
N.
, and
Hamilton
,
D. L.
,
1992
, “
Isostatic Diffusion Bonding of Superplastic Ti-6A1-4V
,”
Mater. Sci. Eng.: A
,
150
(
1
), pp.
1
6
.
20.
Pilling
,
J.
,
Ridley
,
N.
, and
Islam
,
M. F.
,
1996
, “
On the Modeling of Diffusion Bonding in Materials: Superplastic Super Alpha-2
,”
Mater. Sci. Eng.: A
,
205
(
1–2
), pp.
72
79
.
21.
Islam
,
M. F.
,
Pilling
,
J.
, and
Ridley
,
N.
,
1997
, “
Effect of Surface Finish and Sheet Thickness on Isostatic Diffusion Bonding of Superplastic Ti-6AI-4V
,”
Mater. Sci. Technol.
,
13
(
12
), pp.
1045
1050
.
22.
Li
,
S.-X.
,
Tu
,
S.-T.
, and
Xuan
,
F.-Z.
,
2005
, “
A Probabilistic Model for Prediction of Bonding Time in Diffusion Bonding
,”
Mater. Sci. Eng.: A
,
407
(
1–2
), pp.
250
255
.
23.
Ma
,
R. F.
,
Li
,
M. Q.
,
Li
,
H.
, and
Yu
,
W. X.
,
2012
, “
Modeling of Void Closure in Diffusion Bonding Process Based on Dynamic Conditions
,”
Sci. China: Technol. Sci.
,
55
(
9
), pp.
2420
2431
.
24.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps
,
Pergamon
,
Oxford, UK
.
25.
Johnson
,
W.
,
Sowerby
,
R.
, and
Venter
,
R. D.
,
1982
,
Plane Strain Slip Fields for Metal Deformation Processes
,
Pergamon Press
,
Oxford, UK
, pp.
119
121
.
26.
Johnson
,
W.
, and
Mellor
,
P. B.
,
1983
,
Engineering Plasticity
,
Ellis Hardwood
,
Chichester, UK
, p.
219
.
27.
Orhan
,
N.
,
Aksoy
,
M.
, and
Eroglu
,
M.
,
1999
, “
A New Model for Diffusion Bonding and Its Application to Duplex Alloys
,”
Mater. Sci. Eng.: A
,
271
(
1–2
), pp.
458
468
.
You do not currently have access to this content.