Over the past several decades, aluminum foam (Al-foam) has found increasing popularity in industrial applications due to its unique material properties. Unfortunately, till date Al-foam can only be affordably manufactured in flat panels, and it becomes necessary to bend the foam to the final shape that is required in engineering applications. Past studies have shown that thin cell walls crack and collapse when conventional mechanical bending methods are used. Laser forming, on the other hand, was shown to be able to bend the material without causing fractures and cell collapse. This study was focused on the thermal aspects of laser forming of closed-cell Al-foam. An infrared camera was used to measure the transient temperature response of Al-foam to stationary and moving laser sources. Moreover, three different numerical models were developed to determine how much geometrical accuracy is needed to obtain a good agreement with experimental data. Different levels of geometrical complexity were used, including a simple solid geometry, a Kelvin-cell based geometry, and a highly accurate porous geometry that was based on an X-ray computed tomography (CT) scan. The numerical results were validated with the experimental data, and the performances of the numerical models were compared.

References

References
1.
Fuganti
,
A.
,
Lorenzi
,
L.
,
Hanssen
,
A. G.
, and
Langseth
,
M.
,
2000
, “
Aluminium Foam for Automotive Applications
,”
Adv. Eng. Mater.
,
4
(
2
), pp.
200
204
.
2.
Davim
,
J. P.
,
2012
,
Lasers in Manufacturing
,
Wiley
,
London
.
3.
Contorno
,
D.
,
Filice
,
L.
,
Fratini
,
L.
, and
Micari
,
F.
,
2006
, “
Forming of Aluminum Foam Sandwich Panels: Numerical Simulations and Experimental Tests
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
364
367
.
4.
Zu
,
G. Y.
,
Lu
,
R. H.
,
Li
,
X. B.
,
Zhong
,
Z. Y.
,
Ma
,
X. J.
,
Han
,
M. B.
, and
Yao
,
G. C.
,
2013
, “
Three-Point Bending Behavior of Aluminum Foam Sandwich With Steel Panel
,”
Trans. Nonferrous. Met. Soc. China
,
23
(
9
), pp.
2491
2495
.
5.
Li
,
W.
, and
Yao
,
Y. L.
,
2001
, “
Laser Forming With Constant Line Energy
,”
Int. J. Adv. Manuf. Technol.
,
17
(
3
), pp.
196
203
.
6.
Li
,
W.
, and
Yao
,
Y. L.
,
2000
, “
Numerical and Experimental Study of Strain Rate Effects in Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
445
451
.
7.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Cooling Effects in Multiscan Laser Forming
,”
SME J. Manuf. Processes
,
3
(
1
), pp.
60
72
.
8.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2002
, “
Microstructure Integrated Modeling of Multiscan Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
379
388
.
9.
Cheng
,
P.
,
Fan
,
Y.
,
Zhang
,
J.
,
Mika
,
D.
,
Graham
,
M.
,
Zhang
,
W.
,
Marte
,
J.
,
Jones
,
M.
, and
Yao
,
Y. L.
,
2006
, “
Laser Forming of Varying Thickness Plate—Part I: Process Analysis
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
634
641
.
10.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2004
, “
Process Synthesis of Laser Forming by Genetic Algorithms
,”
Int. J. Mach. Tool Manuf.
,
44
(
15
), pp.
1619
1628
.
11.
Guglielmotti
,
A.
,
Quadrini
,
F.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2009
, “
Laser Bending of Aluminum Foam Sandwich Panels
,”
Adv. Eng. Mater.
,
11
(
11
), pp.
902
906
.
12.
Quadrini
,
F.
,
Guglielmotti
,
A.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2010
, “
Laser Forming of Open-Cell Aluminium Foams
,”
J. Mater. Process. Technol.
,
210
(
11
), pp.
1517
1522
.
13.
Santo
,
L.
,
Guglielmotti
,
A.
, and
Quadrini
,
F.
,
2010
, “
Formability of Open-Cell Aluminium Foams by Laser
,”
ASME
Paper No. MSEC2010-34282.
14.
Quadrini
,
F.
,
Bellisario
,
D.
,
Ferrari
,
D.
,
Santo
,
L.
, and
Santarsiero
,
A.
,
2013
, “
Numerical Simulation of Laser Bending of Aluminum Foams
,”
Key Eng. Mater.
,
554–557
, pp.
1864
1871
.
15.
Santo
,
L.
,
Bellisario
,
D.
,
Rovatti
,
L.
, and
Quadrini
,
F.
,
2012
, “
Microstructural Modification of Laser-Bent Open-Cell Aluminum Foams
,”
Key Eng. Mater.
,
504–506
, pp.
1213
1218
.
16.
Quadrini
,
F.
,
Bellisario
,
D.
,
Ferrari
,
D.
,
Santo
,
L.
, and
Santarsiero
,
A.
,
2014
, “
Numerical Simulation of Laser Forming of Aluminum Sponges: Effect of Temperature and Heat Treatments
,”
Key Eng. Mater.
,
611–612
, pp.
731
738
.
17.
Zhang
,
M.
,
Chen
,
C. J.
,
Brandal
,
G.
,
Bian
,
D.
, and
Yao
,
Y. L.
,
2015
, “
Experimental and Numerical Investigation of Laser Forming of Closed-Cell Aluminum Foam
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021006
.
18.
MacGregor
,
R. K.
, and
Emery
,
A. F.
,
1969
, “
Free Convection Through Vertical Plane Layers—Moderate and High Prandtl Number Fluids
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
391
401
.
19.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1988
,
Cellular Solids: Structure and Properties
,
Pergamon
,
Oxford, UK
.
20.
Mukarami
,
T.
,
Tsumura
,
T.
,
Ikeda
,
T.
,
Nakajima
,
H.
, and
Nakata
,
K.
,
2007
, “
Anisotropic Fusion Profile and Joint Strength of Lotus-Type Porous Magnesium by Laser Welding
,”
Mater. Sci. Eng. A
,
456
(
1–2
), pp.
278
285
.
21.
Yilbas
,
B. S.
,
Akhtar
,
S. S.
, and
Keles
,
O.
,
2013
, “
Laser Cutting of Aluminum Foam: Experimental and Model Studies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051018
.
22.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Washington, DC
.
23.
Öchsner
,
A.
,
Murch
,
G. E.
, and
De Lemos
,
M. J. S.
,
2008
,
Thermal Properties Simulation and Prediction
,
Wiley
,
Weinheim, Germany
.
24.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2014
, “
Thermal Conductive and Radiative Properties of Solid Foams: Traditional and Recent Advanced Modelling Approaches
,”
C. R. Phys.
,
15
(
8–9
), pp.
683
695
.
25.
Lu
,
T. J.
, and
Chen
,
C.
,
1999
, “
Thermal Transport and Fire Retardance Properties of Cellular Aluminium Alloys
,”
Acta Mater.
,
47
(
5
), pp.
1469
1485
.
26.
Ma
,
M. Y.
, and
Ye
,
H.
,
2014
, “
An Image Analysis Method to Obtain the Effective Thermal Conductivity of Metallic Foams Via a Redefined Concept of Shape Factor
,”
J. Appl. Therm. Eng.
,
73
(
1
), pp.
1277
1282
.
27.
De Giorgi
,
M.
,
Carofalo
,
A.
,
Dattoma
,
V.
,
Nobile
,
R.
, and
Palano
,
F.
,
2010
, “
Aluminium Foams Structural Modelling
,”
Comput. Struct.
,
88
(
1–2
), pp.
25
35
.
28.
Mills
,
N. J.
,
Stämpfli
,
R.
,
Marone
,
F.
, and
Brühwiler
,
P. A.
,
2009
, “
Finite Element Micromechanics Model of Impact Compression of Closed-Cell Polymer Foams
,”
Int. J. Solids Struct.
,
46
(
3–4
), pp.
677
697
.
29.
Spittel
,
T.
,
Spittel
,
M.
, and
Warlimont
,
H.
,
2011
,
Non-Ferrous Alloys—Light Metals
, Vol.
2C2
,
Springer
,
Berlin
.
30.
Bao
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Analysis and Prediction of Edge Effects in Laser Bending
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
53
61
.
31.
Geiger
,
M.
, and
Vollertsen
,
F.
,
1993
, “
The Mechanisms of Laser Forming
,”
CIRP Ann.
,
42
(
1
), pp.
301
304
.
You do not currently have access to this content.