Deformation of a direct quenched type of ultra-high strength steel (UHSS) with low-carbon content is studied in this work. Although this material, as manufactured, combines high strength and good ductility, it is highly sensitive to the workshop fabrication processes used. The presence of stress concentration due to structural discontinuity or notch effects can accentuate the effect of fabrication processes on the deformation capacity of the material. To evaluate the influence of fabrication methods on deformation capacity, a series of tensile tests are done on both pure base material (BM) and after the steel has been subjected to heat input (HI) or cold forming (CF). To study the effect of HI due to welding or other heat-based workshop fabrication processes, the surface of the material was dressed by laser beam at controlled speed and laser intensity. CF effects were studied by bending the specimens to a predetermined angle prior to subjecting the steel to tensile testing. Experimental results were compared with numerical simulation using ls-dyna simulation software. The generated results show acceptable agreement between experimental and numerical simulation outcomes.

References

1.
Shaw
,
J.
,
Kuriyama
,
Y.
, and
Lambriks
,
M.
,
2011
, “
Achieving a Lightweight and Steel-Intensive Body Structure for Alternative Powertrains
,” SAE Technical Paper No. 2011-01-0425.
2.
Matsuku
,
S.
,
Hasegawa
,
K.
, and
Tanaka
,
Y.
,
2007
, “
Newly-Developed Ultra-High Tensile Strength Steels With Excellent Formability and Weldability
,” JFE Technical Report No. 10.
3.
Hasegawa
,
K.
,
Kaneko
,
S.
, and
Seto
,
K.
,
2013
, “
Cold-Rolled and Galvannealed (GA) High Strength Steel Sheets for Automotive Cabin Structure
,” JFE Technical Report No. 18.
4.
Guofei
,
C.
,
Ming
,
F. S.
, and
Tau
,
T.
,
2012
, “
Optimized AHSS Structures for Vehicle Side Impact
,” SAE Paper No. 2012-01-0044.
5.
Kawalla
,
R.
, and
Waengler
,
S.
,
2008
, “
Advanced High Strength Steels for Automotive Industry
,”
Arch. Civ. Mech. Eng.
,
8
(
2
), pp.
103
117
.
6.
Wallin
,
K.
,
Pallaspuro
,
S.
,
Valkonen
,
I.
,
Karjalainen
,
P.
, and
Suikkanen
,
P.
,
2015
, “
Fracture Properties of High Performance Steels and Their Welds
,”
Eng. Fract. Mech.
,
135
, pp.
219
231
.
7.
Azhari
,
F.
,
Heidarpour
,
A.
,
Zhao
,
X. L.
, and
Hutchinson
,
C. R.
,
2015
, “
Mechanical Properties of Ultra-High Strength (Grade 1200) Steel Tubes Under Cooling Phase of a Fire: An Experimental Investigation
,”
Constr. Build. Mater.
,
93
, pp.
841
850
.
8.
Osawa
,
K.
,
Shimomura
,
T.
,
Kinoshita
,
M.
,
Matsudo
,
K.
, and
Iwase
,
K.
,
1983
, “
Development of High-Strength Cold-Rolled Steel Sheets for Automotive Use by Continuous Annealing
,” SAE Technical Paper No. 830359.
9.
Cazes
,
C.
, and
Ronin
,
F.
,
2002
, “
Use of HSS1, VHSS2 and UHSS3 Steels in the Body in White: A Panorama of the Latest European Vehicles, State of Art and Perspectives
,” SAE Technical Papers No. 2002-01-2049.
10.
Nonaka
,
T.
,
Taniguchi
,
H.
,
Goto
,
K.
, and
Yamazaki
,
K.
,
2003
, “
Development of Ultra-High Strength Cold-Rolled Steel Sheets for Automotive Use
,” Nippon Steel Technical Report No. 88.
11.
Mukai
,
Y.
,
2005
, “
Development of New High-Strength Steel Sheets for Automobiles
,”
Kobelco Technology Review
,
1
, pp.
1
12
.
12.
Aratani
,
M.
,
Ishiguro
,
Y.
,
Hashimoto
,
Y.
,
Toyoda
,
S.
,
Kimura
,
H.
,
Sonobe
,
O.
, and
Gunji
,
M.
,
2013
, “
Development of UTS 980 MPa Grade Steel Tube With Excellent Formability for Automotive Body Parts
,” Proceedings of the FISITA 2012 World Automotive Congress (Lecture Notes in Electrical Engineering), Originally published in JFE GIHO No. 4, Japan, pp.
2013
2224
.
13.
Tang
,
B. T.
,
Wang
,
Q. L.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P. F.
,
2014
, “
Influence of Temperature and Deformation on Phase Transformation and Vickers Hardness in Tailored Tempering Process: Numerical and Experimental Verifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051018
.
14.
Kömi
,
J.
,
Karjalainen
,
P.
, and
Porter
,
D.
,
2016
,
Direct-Quenched Structural Steels, Encyclopedia of Iron, Steel, and Their Alloys
,
Taylor & Francis
,
London
.
15.
Guo
,
W.
,
Crowther
,
D.
,
Francis
,
J. A.
,
Thomson
,
A.
, and
Liu. Z
,
L. L.
,
2015
, “
Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel
,”
Materials and Design
,
85
, pp.
534
548
.
16.
BS EN 1993-1-12, 2007,
Eurocode3: Design of Steel Structures: Part 1-12: Additional Rules for the Extension of EN 1993 Up To Steel Grades S 700
, BSI, London.
17.
ANSI/AISC 360-10, 2010,
Specification for Structural Steel Buildings
, AISC, Chicago, IL.
18.
Cao
,
K.
,
Guo
,
Y. J.
, and
Zeng
,
D. W.
,
2015
, “
Buckling Behavior of Large-Section and 420 MPa High-Strength Angle Steel Columns
,”
J. Constr. Steel Res.
,
111
, pp.
11
20
.
19.
Turán
,
P.
, and
Horváth
,
L.
,
2015
, “
Experimental Behavior of Tension Plates With Center Hole Made From High Strength Steel
,” Proceedings of The 13th Nordic Steel Construction Conference, Sept. 23–25, Tampere, Finland, pp.
223
224
.
20.
EN
,
2010
, “
Eurocode—Basis of Structural Design
,” European Committee for Standardization CEN, Brussels, Belgium.
21.
Dzioba
,
I.
,
Pała
,
T.
, and
Valkonen
,
I.
,
2013
, “
Strength and Fracture Toughness of the Welded Joints Made of High-Strength Ferritic Steel
,”
Acta Mech. Autom.
,
7
(
4
), pp.
226
229
.
22.
Sato
,
K.
,
Yu
,
Q.
,
Hiramoto
,
J.
,
Urabe
,
T.
, and
Yoshitake
,
A.
,
2015
, “
A Method to Investigate Strain Rate Effects on Necking and Fracture Behaviors of Advanced High-Strength Steels Using Digital Imaging Strain Analysis
,”
Int. J. Impact Eng.
,
75
, pp.
11
26
.
23.
Boyce
,
B. L.
, and
Dilmore
,
M. F.
,
2009
, “
The Dynamic Tensile Behavior of Tough, Ultra-High Strength Steels at Strain-Rates From 0.0002 s−1 to 200 s−1
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
263
271
.
24.
Solomos
,
G.
,
Albertini
,
C.
,
Labibes
,
K.
,
Pizzinato
,
V.
, and
Viaccoz
,
B.
,
2004
, “
Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures
,”
Nucl. Eng. Des.
,
229
(
2–3
), pp.
139
149
.
25.
Cadoni
,
E.
,
Dotta
,
M.
,
Forni
,
D.
,
Tesio
,
N.
, and
Albertini
,
C.
,
2013
, “
Mechanical Behavior of Quenched and Self-Tempered Reinforcing Steel in Tension Under High Strain Rate
,”
Mater. Des.
,
49
, pp.
657
666
.
26.
Verleysen
,
P.
, and
Degrieck
,
J.
,
2004
, “
Experimental Investigation of the Deformation of Hopkinson Bar Specimens
,”
Int. J. Impact Eng.
,
3
(
3
), pp.
239
253
.
27.
LS-DYNA Keyword User's Manual, Version R7.1,
Livermore Software Technology Corporation (LSTC)
,
Livermore, CA
.
28.
Şükrü
,
T.
,
2010
, “
The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals
,”
J. Mater. Des.
,
31
(
5
), pp.
2649
2653
.
29.
Björk
,
T.
,
Salo
,
J.
,
Nykänen
,
T.
, and
Valkonen
,
I.
,
2015
, “
On the Critical Plane of Axially Loaded Plate Structures Made of Ultra High Strength Steel
,”
International Institute of Welding (IIW) Conference
, Helsinki, Finland, IIW Doc. XV-1492-15.
30.
Feldmann
,
M.
,
Schaffrath
,
A.
, and
Schillo
,
N.
,
2015
, “
Derivation of New, Optimized Strength Criteria for Steel Components
,” METEC and 2nd ESTAD, European Steel Technology and Application Days, Düsseldorf, Germany, Paper No. 481790.
31.
Poorhaydari
,
K.
,
Patchett
,
B. M.
, and
Ivey
,
D. G.
,
2005
, “
Estimation of Cooling Rate in the Welding of Plates With Intermediate Thickness
,”
Weld. J.
,
84
, pp.
149s
155s
.
32.
Samei
,
J.
,
Green
,
D. E.
, and
Golvanoshchenko
,
S.
,
2014
, “
Analysis of Failure in Dual Phase Steel Sheets Subject to Electrohydraulic Forming
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051010
.
33.
Farrokhi
,
F.
,
Siltanen
,
J.
, and
Salminen
,
A.
,
2015
, “
Fiber Laser Welding of Direct-Quenched Ultrahigh Strength Steels: Evaluation of Hardness Tensile Strength, and Toughness Properties at Subzero Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061012
.
You do not currently have access to this content.