Additive manufacturing (AM) is a promising direct manufacturing technology, and the geometric accuracy of AM built products is crucial to fulfill the promise of AM. Prediction and control of three-dimensional (3D) shape deformation, particularly out-of-plane geometric errors of AM built products, have been a challenging task. Although finite-element modeling has been extensively applied to predict 3D deformation and distortion, improving part accuracy based purely on such simulation still needs significant methodology development. We have been establishing an alternative strategy that can be predictive and transparent to specific AM processes based on a limited number of test cases. Successful results have been accomplished in our previous work to control in-plane (x–y plane) shape deformation through offline compensation. In this study, we aim to establish an offline out-of-plane shape deformation control approach based on limited trials of test shapes. We adopt a novel spatial deformation formulation in which both in-plane and out-of-plane geometric errors are placed under a consistent mathematical framework to enable 3D accuracy control. Under this new formulation of 3D shape deformation, we develop a prediction and offline compensation method to reduce out-of-plane geometric errors. Experimental validation is successfully conducted to validate the developed 3D shape accuracy control approach.

References

References
1.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
3.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
.
4.
Storåkers
,
B.
,
Fleck
,
N.
, and
McMeeking
,
R.
,
1999
, “
The Viscoplastic Compaction of Composite Powders
,”
J. Mech. Phys. Solids
,
47
(
4
), pp.
785
815
.
5.
Secondi
,
J.
,
2002
, “
Modeling Powder Compaction From a Pressure-Density Law to Continuum Mechanics
,”
Powder Metall.
,
45
(
3
), pp.
213
217
.
6.
Mori
,
K.
,
Osakada
,
K.
, and
Takaoka
,
S.
,
1996
, “
Simplified Three-Dimensional Simulation of Non-Isothermal Filling in Metal Injection Moulding by the Finite Element Method
,”
Eng. Comput.
,
13
(
2
), pp.
111
121
.
7.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
8.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
9.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
10.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” National Science Foundation and the Office of Naval Research, Technical Report.
11.
Hu
,
Y.
,
Li
,
Z.
,
Li
,
K.
, and
Yao
,
Z.
,
2014
, “
Predictive Modeling and Uncertainty Quantification of Laser Shock Processing by Bayesian Gaussian Processes With Multiple Outputs
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041014
.
12.
Hilton
,
P.
, and
Jacobs
,
P.
,
2000
,
Rapid Tooling: Technologies and Industrial Applications
,
CRC
, Boca Raton, FL.
13.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for 3D Printing Processes
,”
IIE Trans. Qual. Reliab.
,
47
(
5
), pp.
431
441
.
14.
Campanelli
,
S.
,
Cardano
,
G.
,
Giannoccaro
,
R.
,
Ludovico
,
A.
, and
Bohez
,
E. L.
,
2007
, “
Statistical Analysis of the Stereolithographic Process to Improve the Accuracy
,”
Comput. Aided Des.
,
39
(
1
), pp.
80
86
.
15.
Zhou
,
J. G.
,
Herscovici
,
D.
, and
Chen
,
C. C.
,
2000
, “
Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts
,”
Int. J. Mach. Tools Manuf.
,
40
(
3
), pp.
363
379
.
16.
Zhou
,
C.
,
2014
, “
A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
)
, p.
061023
.
17.
Sood
,
A. K.
,
Ohdar
,
R.
, and
Mahapatra
,
S.
,
2009
, “
Improving Dimensional Accuracy of Fused Deposition Modeling Processed Part Using Grey Taguchi Method
,”
Mater. Des.
,
30
(
10
), pp.
4243
4252
.
18.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
118
(
1
), pp.
385
388
.
19.
Hossain
,
M. S.
,
Espalin
,
D.
,
Ramos
,
J.
,
Perez
,
M.
, and
Wicker
,
R.
,
2014
, “
Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061002
.
20.
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Staiano
,
G.
,
2015
, “
Understanding Process Parameter Effects of Reprap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011017
.
21.
Tong
,
K.
,
Joshi
,
S.
, and
Lehtihet
,
E.
,
2008
, “
Error Compensation for Fused Deposition Modeling (FDM) Machine by Correcting Slice Files
,”
Rapid Prototyping J.
,
14
(
1
), pp.
4
14
.
22.
Tong
,
K.
,
Lehtihet
,
E.
, and
Joshi
,
S.
,
2003
, “
Parametric Error Modeling and Software Error Compensation for Rapid Prototyping
,”
Rapid Prototyping J.
,
9
(
5
), pp.
301
313
.
23.
Xu
,
L.
,
Huang
,
Q.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2013
, “
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
,”
ASME
Paper No. IMECE2013-66329.
24.
Sabbaghi
,
A.
,
Dasgupta
,
T.
,
Huang
,
Q.
, and
Zhang
,
J.
,
2014
, “
Inference for Deformation and Interference in 3D Printing
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1395
1415
.
25.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Predictive Modeling of Geometric Deviations of 3D Printed Products: A Unified Modeling Approach for Cylindrical and Polygon Shapes
,”
2014 IEEE International Conference on Automation Science and Engineering
(
CASE
), Taipei, Taiwan, Aug. 18–22, pp.
25
30
.
26.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
27.
Song
,
S.
,
Wang
,
A.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2014
, “
Shape Deviation Modeling for Fused Deposition Modeling Processes
,”
2014 IEEE International Conference on Automation Science and Engineering
(
CASE
), Taipei, Taiwan, Aug. 18–22, pp.
758
763
.
28.
Song
,
S.
,
Wang
,
A.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2016
, “
Shape Deviation Modeling and Compensation for Fused Deposition Modeling Processes
,”
IEEE Trans. Autom. Sci. Eng.
(to be published).
29.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
.
30.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2015
, “
Out-of-Plane Geometric Error Prediction for Additive Manufacturing
,”
2015 IEEE International Conference on Automation Science and Engineering
(
CASE
), Gothenberg, Germany, Aug. 24–28, pp.
918
923
.
This content is only available via PDF.
You do not currently have access to this content.