Composite structures are widely used due to their superior properties, such as low density, high strength, and high stiffness-to-weight ratio (Mallick, 1993, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Marcel Dekker, New York). However, the lack of methodologies for variation modeling and analysis of composite part assembly has imposed a significant constraint on developing dimensional control for composite assembly processes. This paper develops a modeling method to predict assembly deviation for compliant composite parts in a single-station assembly process. The approach is discussed in two steps: considering the part manufacturing error (PME) only and considering both the PME and the fixture position error (FPE). Finite element method (FEM) and homogenous coordinate transformation are used to reveal the impact of the PME and the FPE. The validity of the method is verified with two case studies on assembly deviation prediction of two composite laminated plates considering the PME only and both the PME and the FPE, respectively. The proposed method provides the basis for assembly deviation prediction in the multistation composite assembly.

References

References
1.
Mallick
,
P. K.
,
1993
,
Fiber-Reinforced Composites: Materials, Manufacturing, and Design
,
Marcel Dekker
,
New York
.
2.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1995
, “
An Offset Element Model and Its Applications in Predicting Sheet Metal Assembly Variation
,”
Int. J. Mach. Tools Manuf.
,
35
(
11
), pp.
1545
1557
.
3.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
,
1996
, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
62
67
.
4.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
5.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-Station Assembly System With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
6.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
7.
Camelio
,
J.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
355
360
.
8.
Choi
,
W.
, and
Chung
,
H.
,
2015
, “
Variation Simulation of Compliant Metal Plate Assemblies Considering Welding Distortion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031008
.
9.
Matuszyk
,
T. I.
,
Cardew-Hall
,
M. J.
, and
Rolfe
,
B. F.
,
2010
, “
The Kernel Density Estimate/Point Distribution Model (KDE-PDM) for Statistical Shape Modeling of Automotive Stampings and Assemblies
,”
Rob. Comput.-Integr. Manuf.
,
26
(
4
), pp.
370
380
.
10.
Dahlstrom
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
11.
Lee
,
B.
,
Shalaby
,
M. M.
,
Collins
,
R. J.
,
Crisan
,
V.
,
Walls
,
S. A.
,
Robinson
,
D. M.
, and
Saitou
,
K.
,
2007
, “
Variation Analysis of Three Dimensional Non-Rigid Assemblies
,”
IEEE
International Symposium on Assembly and Manufacturing
, Ann Arbor, MI, July 22–25, pp.
13
18
.
12.
Chang
,
M.
, and
Gossard
,
D. C.
,
1997
, “
Modeling the Assembly of Compliant, Non-Ideal Parts
,”
Comput.-Aided Des.
,
29
(
10
), pp.
701
708
.
13.
Shui
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
1997
, “
Flexible Beam-Based Modeling of Sheet Metal Assembly for Dimensional Control
,”
NAMRI/SME Trans.
,
24
, pp.
49
54
.
14.
Liao
,
X.
, and
Wang
,
G. G.
,
2007
, “
Non-Linear Dimensional Variation Analysis for Sheet Metal Assemblies by Contact Modeling
,”
Finite Elem. Anal. Des.
,
44
(
1
), pp.
34
44
.
15.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
.
16.
Stewart
,
M. L.
, and
Chase
,
K. W.
,
2005
, “
Variation Simulation of Fixtured Assembly Processes for Compliant Structures Using Piecewise
,”
ASME
Paper No. IMECE2005-82371, pp.
1
10
.
17.
Peng
,
Q.
,
Peng
,
X.
,
Wang
,
Y.
, and
Wang
,
T.
,
2015
, “
Investigation on V-Bending and Springback of Laminated Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041002
.
18.
Abdelal
,
G.
,
Georgiou
,
G.
,
Cooper
,
J.
,
Robotham
,
A.
,
Levers
,
A.
, and
Lunt
,
P.
,
2015
, “
Numerical and Experimental Investigation of Aircraft Panel Deformations During Riveting Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011009
.
19.
Dong
,
C. S.
, and
Kang
,
L.
,
2012
, “
Deformation and Stress of a Composite-Metal Assembly
,”
Int. Adv. Manuf. Technol.
,
61
(
9
), pp.
1035
1042
.
20.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Modeling and Diagnosis of Multistage Manufacturing Processes: Part I-State Space Model
,”
Japan-USA Symposium on Flexible Automation
, Ann Arbor, MI, pp.
23
26
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4808&rep=rep1&type=pdf
21.
Huang
,
W.
,
Lin
,
J.
, and
Bezdecny
,
Z.
,
2007
, “
Stream-of-Variation Modeling Part I: A Generic Three-Dimensional Variation Model for Rigid-Body Assembly in Single Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
821
831
.
22.
Huang
,
W.
,
Lin
,
J.
, and
Kong
,
M.
,
2007
, “
Stream-of-Variation (SOVA) Modeling Part II: A Generic 3D Variation Model for Rigid-Body Assembly in Multi-Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
832
842
.
23.
Zhang
,
T.
, and
Shi
,
J.
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multi-Station Processes
,”
ASME J. Manuf. Sci. Eng.
(to be published).
24.
Menassa
,
R.
, and
DeVries
,
W.
,
1989
, “
Locating Point Synthesis in Fixture Design
,”
CIRP Ann.-Manuf. Technol.
,
38
(
1
), pp.
165
169
.
25.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
.
26.
Nettles
,
A. T.
,
1994
, “
Basic Mechanics of Laminated Composite Plates
,”
NASA Reference Publication 1351
, pp.
33
40
and pp. 63–72.http://ntrs.nasa.gov/search.jsp?R=19950009349
27.
Wang
,
X. C.
,
2003
,
Finite Element Method
,
Qinghua University Press
,
Beijing, China
, pp.
334
337
.
28.
Nettles
,
A. T.
,
1994
, “
Basic Mechanics of Laminated Composite Plates
,”
NASA Reference Publication 1351
, pp.
11
23
.http://ntrs.nasa.gov/search.jsp?R=19950009349
You do not currently have access to this content.