It is of tremendous interest to apply laser to process nanoparticles-reinforced metals for widespread applications. However, little fundamental understanding has been obtained on the underlining physics of laser interactions with nanoparticles-reinforced metals. In this work, fundamental study was carried out to understand the effects of nanoparticles on the optical and thermophysical properties of the base metal, the corresponding heat transfer and melt pool flow processes, and the consequent surface property in laser melting. Part I presents both experimental and theoretical results on the effects of nanoparticles on the optical reflectivity, specific heat, and thermal conductivity. Electrocodeposition was used to produce nickel samples with nanoparticles. Using a power meter, the reflectivity of Ni/Al2O3 (1.8 vol. %) was measured to be 65.8% while pure Ni was at 67.4%, indicating that the Al2O3 nanoparticles did not change the reflectivity substantially. Differential scanning calorimetry was used to determine the heat capacity of the nanocomposites. The specific heat capacities of the Ni/Al2O3 (4.4 vol. %) and Ni/SiC (3.6 vol. %) at room temperature were 0.424 ± 0.013 J/g K and 0.423 ± 0.014 J/g K, respectively, close to that of pure Ni, 0.424 ± 0.008 J/g K. An experimental setup was developed to measure thermal conductivity based on the laser flash method. The thermal conductivities of these Ni/Al2O3 and Ni/SiC nanocomposites at room temperature were 84.1 ± 3.4 W/m K and 87.3 ± 3.4 W/m K, respectively, less than that of pure Ni, 91.7 ± 2.8 W/m K. Theoretical models based on the effective medium approximation theory were also used to predict the heat capacity and thermal conductivity of the nanoparticles-reinforced nickel. The theoretical results match well with the measurements. The knowledge of the optical and thermophysical properties of nanoparticles-reinforced metals would provide valuable insights to understand and control laser processing of metal matrix nanocomposites.

References

References
1.
Rawal
,
S.
,
2001
, “
Metal-Matrix Composites for Space Applications
,”
JOM
,
53
(
4
), pp.
14
17
.
2.
Crainic
,
N.
, and
Marques
,
A. T.
,
2002
, “
Nanocomposites: A State-of-the-Art Review
,”
Key Eng. Mater.
,
230–232
, pp.
656
659
.
3.
Jiang
,
Q. C.
,
Li
,
X. L.
, and
Wang
,
H. Y.
,
2003
, “
Fabrication of TiC Particulate Reinforced Magnesium Matrix Composites
,”
Scr. Mater.
,
48
(
6
), pp.
713
717
.
4.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng. A
,
380
(1–2), pp.
378
383
.
5.
Cao
,
G.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031105
.
6.
Chen
,
L.
,
Konishi
,
H.
,
Fehrenbacher
,
A.
,
Ma
,
C.
,
Xu
,
J.
,
Choi
,
H.
,
Xu
,
H.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.
,
2012
, “
Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites
,”
Scr. Mater.
,
67
(
1
), pp.
29
32
.
7.
Ma
,
C.
,
Chen
,
L.
,
Xu
,
J.
,
Fehrenbacher
,
A.
,
Li
,
Y.
,
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Zheng
,
J.
, and
Li
,
X.
,
2013
, “
Effect of Fabrication and Processing Technology on the Biodegradability of Magnesium Nanocomposites
,”
J. Biomed. Mater. Res.
, Part B,
101
(
5
), pp.
870
877
.
8.
Low
,
C. T. J.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2006
, “
Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit
,”
Surf. Coat. Technol.
,
201
(1–2), pp.
371
383
.
9.
Ready
,
J. F.
, and
Farson
,
D. F.
,
2001
,
LIA Handbook of Laser Material Processing
,
Laser Institute of America
,
Orlando, FL
.
10.
Steen
,
W. M.
,
2010
,
Laser Material Processing
,
Springer-Verlag
,
New York
.
11.
Wen
,
S.
, and
Shin
,
Y. C.
,
2011
, “
Comprehensive Predictive Modeling and Parametric Analysis of Multitrack Direct Laser Deposition Processes
,”
J. Laser Appl.
,
23
(
2
), p.
022003
.
12.
Hsu
,
S.
,
Tan
,
H.
, and
Yao
,
Y. L.
,
2013
, “
Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011005
.
13.
Zhou
,
Y.
,
Gao
,
Y.
,
Wu
,
B.
,
Tao
,
S.
, and
Liu
,
Z.
,
2014
, “
Deburring Effect of Plasma Produced by Nanosecond Laser Ablation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
024501
.
14.
Kongsuwan
,
P.
,
Brandal
,
G.
, and
Yao
,
Y. L.
,
2015
, “
Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031004
.
15.
Gu
,
D.
,
Wang
,
H.
, and
Zhang
,
G.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder
,”
Metall. Mater. Trans. A
,
45
(
1
), pp.
464
476
.
16.
Biedunkiewicz
,
A.
,
Biedunkiewicz
,
W.
,
Figiel
,
P.
,
Gabriel-Polrolniczak
,
U.
,
Grzesiak
,
D.
, and
Krawczyk
,
M.
,
2013
, “
Effect of Milling Time on Thermal Treatment of TiC, TiB2/Steel Powders
,”
J. Therm. Anal. Calorim.
,
113
(
1
), pp.
379
383
.
17.
Dadbakhsh
,
S.
, and
Hao
,
L.
, “
Effect of Al Alloys on Selective Laser Melting Behaviour and Microstructure of In Situ Formed Particle Reinforced Composites
,”
J. Alloys Compd.
,
541
, pp.
328
334
.
18.
Song
,
B.
,
Dong
,
S.
,
Coddet
,
P.
,
Zhou
,
G.
,
Ouyang
,
S.
,
Liao
,
H.
, and
Coddet
,
C.
,
2013
, “
Microstructure and Tensile Behavior of Hybrid Nano-Micro SiC Reinforced Iron Matrix Composites Produced by Selective Laser Melting
,”
J. Alloys Compd.
,
579
, pp.
415
421
.
19.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2012
, “
Pulsed Laser Micro Polishing: Surface Prediction Model
,”
J. Manuf. Processes
,
14
(
3
), pp.
307
315
.
20.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2013
, “
Effects of Pulse Duration on Laser Micro Polishing Using Spatial Gaussian Intensity Distribution
,”
ASME J. Micro Nano Manuf.
,
1
(
1
), p.
011006
.
21.
Ma
,
C.
,
Vadali
,
M.
,
Duffie
,
N. A.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.
,
2013
, “
Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061023
.
22.
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Li
,
X.
,
Vadali
,
M.
, and
Ma
,
C.
,
2013
, “
Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow
,”
CIRP Ann.
,
62
(
1
), pp.
203
206
.
23.
Ma
,
C.
,
Vadali
,
M.
,
Li
,
X.
,
Duffie
,
N. A.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Analytical and Experimental Investigation of Thermocapillary Flow in Pulsed Laser Micropolishing
,”
ASME J. Micro Nano Manuf.
,
2
(
2
), p.
021010
.
24.
Ma
,
C.
,
Chen
,
L.
,
Xu
,
J.
,
Zhao
,
J.
, and
Li
,
X.
,
2015
, “
Control of Fluid Dynamics by Nanoparticles in Laser Melting
,”
J. Appl. Phys.
,
117
(
11
), p.
114901
.
25.
Wang
,
Q.
,
Morrow
,
J. D.
,
Ma
,
C.
,
Duffie
,
N. A.
, and
Pfefferkorn
,
F. E.
,
2015
, “
Surface Prediction Model for Thermocapillary Regime Pulsed Laser Micro Polishing of Metals
,”
J. Manuf. Processes
,
20
(
1
), pp.
340
348
.
26.
Vafaei
,
S.
,
Purkayastha
,
A.
,
Jain
,
A.
,
Ramanath
,
G.
, and
Borca-Tasciuc
,
T.
,
2009
, “
The Effect of Nanoparticles on the Liquid–Gas Surface Tension of Bi2Te3 Nanofluids
,”
Nanotechnology
,
20
(
18
), p.
185702
.
27.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manag.
,
52
(
1
), pp.
789
793
.
28.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X.
,
Liu
,
J.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z.
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
–638.
29.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
30.
Li
,
H. H.
,
1980
, “
Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives
,”
J. Phys. Chem. Ref. Data
,
9
(3), pp.
561
658
.
31.
Mills
,
K. C.
,
2002
,
Recommended Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
32.
Snead
,
L. L.
,
Nozawa
,
T.
,
Katoh
,
Y.
,
Byun
,
T.
,
Kondo
,
S.
, and
Petti
,
D. A.
,
2007
, “
Handbook of SiC Properties for Fuel Performance Modeling
,”
J. Nucl. Mater.
,
371
(1–3), pp.
329
377
.
33.
Chase
,
M. W.
, Jr.
,
1998
, “
NIST-JANAF Thermochemical Tables
,”
J. Phys. Chem.
Ref. Data, Monograph No. 9.
34.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.
35.
Ordonez-Miranda
,
J.
,
Yang
,
R.
, and
Alvarado-Gil
,
J. J.
,
2011
, “
On the Thermal Conductivity of Particulate Nanocomposites
,”
Appl. Phys. Lett.
,
98
(
23
), p.
233111
.
36.
Faroughi
,
S. A.
, and
Huber
,
C.
,
2015
, “
Effective Thermal Conductivity of Metal and Non-Metal Particulate Composites With Interfacial Thermal Resistance at High Volume Fraction of Nano to Macro-Sized Spheres
,”
J. Appl. Phys.
,
117
(
5
), p.
055104
.
37.
Liu
,
D. M.
,
Tuan
,
W. H.
, and
Chiu
,
C. C.
,
1995
, “
Thermal Diffusivity, Heat Capacity and Thermal Conductivity in Al2O3-Ni Composite
,”
Mater. Sci. Eng. B
,
31
(
3
), pp.
287
291
.
38.
Chung
,
Y. D.
,
Chojnacka
,
A. P.
,
Avedisian
,
C. T.
, and
Raj
,
R.
,
1997
, “
Thermal Diffusivity of Particulate Composites Made From Aluminum Oxide and Nickel Aluminide by a Photothermal Deflection Technique
,”
Acta Mater.
,
45
(
7
), pp.
2983
2993
.
You do not currently have access to this content.