In five-axis milling, the bottom edge of a flat end mill is probably involved in cutting when the lead angle of tool axis changes to negative. The mechanistic model will lose accuracy if the bottom edge cutting effect is neglected. In this paper, an improved mechanistic model of five-axis machining with a flat end mill is presented to accurately predict cutting forces by combining the cutting effects of both side and bottom edges. Based on the kinematic analysis of the radial line located at the tool bottom part, the feasible contact radial line (FCRL) is analytically extracted. Then, boundaries of the bottom cutter-workpiece engagements (CWEs) are obtained by intersecting the FCRL with workpiece surfaces and identifying the inclusion relation of its endpoints with the workpiece volume. Next, an analytical method is proposed to calculate the cutting width and the chip area by considering five-axis motions of the tool. Finally, the method of calibrating bottom-cutting force coefficients by conducting a series of plunge milling tests at various feedrates is proposed, and the improved mechanistic model is then applied to predict cutting forces. The five-axis milling with a negative lead angle and the rough machining of an aircraft engine blisk are carried out to test the effectiveness and practicability of the proposed model. The results indicate that it is essential to take into account the bottom edge cutting effect for accurate prediction of cutting forces at tool path zones where the tool bottom part engages with the workpiece.

References

References
1.
Zhu
,
L. M.
,
Zheng
,
G.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2010
, “
Global Optimization of Tool Path for Five-Axis Flank Milling With a Conical Cutter
,”
Comput.-Aided Des.
,
42
(
10
), pp.
903
910
.
2.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.
3.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2016
, “
Smooth Tool Path Optimization for Flank Milling Based on the Gradient-Based Differential Evolution Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081009
.
4.
Guo
,
D. M.
,
Ren
,
F.
, and
Sun
,
Y. W.
,
2010
, “
An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041004
.
5.
Eksioglu
,
C.
,
Kilic
,
Z.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
6.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
.
7.
Freiburg
,
D.
,
Hense
,
R.
,
Kersting
,
P.
, and
Biermann
,
D.
,
2016
, “
Determination of Force Parameters for Milling Simulations by Combining Optimization and Simulation Techniques
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
044502
.
8.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
9.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
10.
Wan
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2015
, “
Mechanics and Dynamics of Multifunctional Tools
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011019
.
11.
Fussell
,
B.
,
Jerard
,
R.
, and
Hemmett
,
J.
,
2003
, “
Modeling of Cutting Geometry and Forces for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
,
35
(
4
), pp.
333
346
.
12.
Roth
,
D.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2003
, “
Mechanistic Modelling of the Milling Process Using an Adaptive Depth Buffer
,”
Comput.-Aided Des.
,
35
(
14
), pp.
1287
1303
.
13.
Roth
,
D.
,
Gray
,
P.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2007
, “
Mechanistic Modelling of 5-Axis Milling Using an Adaptive and Local Depth Buffer
,”
Comput.-Aided Des.
,
39
(
4
), pp.
302
312
.
14.
Ferry
,
W.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011005
.
15.
Ferry
,
W.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part II: Feed Rate Optimization of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011013
.
16.
Sun
,
Y.
, and
Guo
,
Q.
,
2011
, “
Numerical Simulation and Prediction of Cutting Forces in Five-Axis Milling Processes With Cutter Run-Out
,”
Int. J. Mach. Tools Manuf.
,
51
(
10
), pp.
806
815
.
17.
Li
,
Z. L.
,
Niu
,
J. B.
,
Wang
,
X. Z.
, and
Zhu
,
L. M.
,
2015
, “
Mechanistic Modeling of Five-Axis Machining With a General End Mill Considering Cutter Runout
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
67
79
.
18.
Duan
,
X.
,
Peng
,
F.
,
Yan
,
R.
,
Zhu
,
Z.
,
Huang
,
K.
, and
Li
,
B.
,
2016
, “
Estimation of Cutter Deflection Based on Study of Cutting Force and Static Flexibility
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041001
.
19.
Dang
,
J.-W.
,
Zhang
,
W.-H.
,
Yang
,
Y.
, and
Wan
,
M.
,
2010
, “
Cutting Force Modeling for Flat End Milling Including Bottom Edge Cutting Effect
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
986
997
.
20.
Wan
,
M.
,
Zhang
,
W.-H.
, and
Yang
,
Y.
,
2011
, “
Phase Width Analysis of Cutting Forces Considering Bottom Edge Cutting and Cutter Runout Calibration in Flat End Milling of Titanium Alloy
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1852
1863
.
21.
Wan
,
M.
,
Lu
,
M.-S.
,
Zhang
,
W.-H.
, and
Yang
,
Y.
,
2012
, “
A New Ternary-Mechanism Model for the Prediction of Cutting Forces in Flat End Milling
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
34
45
.
22.
Wan
,
M.
,
Zhang
,
W.
,
Qin
,
G.
, and
Tan
,
G.
,
2007
, “
Efficient Calibration of Instantaneous Cutting Force Coefficients and Runout Parameters for General End Mills
,”
Int. J. Mach. Tools Manuf.
,
47
(
11
), pp.
1767
1776
.
23.
Wan
,
M.
,
Zhang
,
W.-H.
,
Dang
,
J.-W.
, and
Yang
,
Y.
,
2009
, “
New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1144
1151
.
24.
Gonzalo
,
O.
,
Beristain
,
J.
,
Jauregi
,
H.
, and
Sanz
,
C.
,
2010
, “
A Method for the Identification of the Specific Force Coefficients for Mechanistic Milling Simulation
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
765
774
.
25.
Sullivan
,
A.
,
Erdim
,
H.
,
Perry
,
R. N.
, and
Frisken
,
S. F.
,
2012
, “
High Accuracy NC Milling Simulation Using Composite Adaptively Sampled Distance Fields
,”
Comput.-Aided Des.
,
44
(
6
), pp.
522
536
.
26.
Lee
,
S. W.
, and
Nestler
,
A.
,
2011
, “
Complete Swept Volume Generation, Part I: Swept Volume of a Piecewise C-1-Continuous Cutter at Five-Axis Milling Via Gauss Map
,”
Comput.-Aided Des.
,
43
(
4
), pp.
427
441
.
27.
Zhu
,
L. M.
,
Zheng
,
G.
, and
Ding
,
H.
,
2009
, “
Formulating the Swept Envelope of Rotary Cutter Undergoing General Spatial Motion for Multi-Axis NC Machining
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
199
202
.
28.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.
You do not currently have access to this content.